IDEAS home Printed from https://ideas.repec.org/p/mtl/montec/01-2017.html
   My bibliography  Save this paper

Finite-Sample Generalized Confidence Distributions and Sign-Based Robust Estimators in Median Regressions with Heterogeneous Dependent Errors

Author

Listed:
  • Élise, COUDIN
  • Jean-Marie DUFOUR

Abstract

We study the problem of estimating the parameters of a linear median regression without any assumption on the shape of the error distribution – including no condition on the existence of moments – allowing for heterogeneity (or heteroskedasticity) of unknown form, noncontinuous distributions, and very general serial dependence (linear and nonlinear). This is done through a reverse inference approach, based on a distribution-free testing theory [Coudin and Dufour (2009, The Econometrics Journal)], from which confidence sets and point estimators are subsequently generated. The estimation problem is tackled in two complementary ways. First, we show how confidence distributions for model parameters can be applied in such a context. Such distributions – which can be interpreted as a form of fiducial inference – provide a frequency-based method for associating probabilities with subsets of the parameter space (like posterior distributions do in a Bayesian setup) without the introduction of prior distributions. We consider generalized confidence distributions applicable to multidimensional parameters, and we suggest the use of a projection technique for confidence inference on individual model parameters. Second, we propose point estimators, which have a natural association with confidence distributions. These estimators are based on maximizing test p-values and inherit robustness properties from the generating distribution-free tests. Both finite-sample and large-sample properties of the proposed estimators are established under weak regularity conditions. We show they are median unbiased (under symmetry and estimator unicity) and possess equivariance properties. Consistency and asymptotic normality are established without any moment existence assumption on the errors, allowing for noncontinuous distributions, heterogeneity and serial dependence of unknown form. These conditions are considerably weaker than those used to show corresponding results for LAD estimators. In a Monte Carlo study of bias and RMSE, we show sign-based estimators perform better than LAD-type estimators in heteroskedastic settings. We present two empirical applications, which involve financial and macroeconomic data, both affected by heavy tails (non-normality) and heteroskedasticity: a trend model for the S&P index, and an equation used to study β-convergence of ouput levels across U.S. States.

Suggested Citation

  • Élise, COUDIN & Jean-Marie DUFOUR, 2017. "Finite-Sample Generalized Confidence Distributions and Sign-Based Robust Estimators in Median Regressions with Heterogeneous Dependent Errors," Cahiers de recherche 01-2017, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  • Handle: RePEc:mtl:montec:01-2017
    as

    Download full text from publisher

    File URL: http://www.cireqmontreal.com/wp-content/uploads/cahiers/01-2017-cah.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jean-Marie Dufour & Mohamed Taamouti, 2005. "Projection-Based Statistical Inference in Linear Structural Models with Possibly Weak Instruments," Econometrica, Econometric Society, vol. 73(4), pages 1351-1365, July.
    2. Portnoy, Stephen, 1991. "Asymptotic behavior of regression quantiles in non-stationary, dependent cases," Journal of Multivariate Analysis, Elsevier, vol. 38(1), pages 100-113, July.
    3. Zhao, Quanshui, 2001. "Asymptotically Efficient Median Regression In The Presence Of Heteroskedasticity Of Unknown Form," Econometric Theory, Cambridge University Press, vol. 17(4), pages 765-784, August.
    4. Weiss, Andrew A., 1991. "Estimating Nonlinear Dynamic Models Using Least Absolute Error Estimation," Econometric Theory, Cambridge University Press, vol. 7(1), pages 46-68, March.
    5. Elise Coudin & Jean-Marie Dufour, 2009. "Finite-sample distribution-free inference in linear median regressions under heteroscedasticity and non-linear dependence of unknown form," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 19-49, January.
    6. Touhami Abdelkhalek & Jean-Marie Dufour, 1998. "Statistical Inference For Computable General Equilibrium Models, With Application To A Model Of The Moroccan Economy," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 520-534, November.
    7. Bantli, Faouzi El & Hallin, Marc, 1999. "L1-estimation in linear models with heterogeneous white noise," Statistics & Probability Letters, Elsevier, vol. 45(4), pages 305-315, December.
    8. Moshe Buchinsky, 1998. "Recent Advances in Quantile Regression Models: A Practical Guideline for Empirical Research," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 88-126.
    9. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
    10. Jean-Marie Dufour & Jan F. Kiviet, 1998. "Exact Inference Methods for First-Order Autoregressive Distributed Lag Models," Econometrica, Econometric Society, vol. 66(1), pages 79-104, January.
    11. Dufour, Jean-Marie & Jasiak, Joann, 2001. "Finite Sample Limited Information Inference Methods for Structural Equations and Models with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(3), pages 815-843, August.
    12. Dufour, Jean-Marie, 2006. "Monte Carlo tests with nuisance parameters: A general approach to finite-sample inference and nonstandard asymptotics," Journal of Econometrics, Elsevier, vol. 133(2), pages 443-477, August.
    13. Buchinsky, Moshe, 1995. "Estimating the asymptotic covariance matrix for quantile regression models a Monte Carlo study," Journal of Econometrics, Elsevier, vol. 68(2), pages 303-338, August.
    14. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, December.
    15. Weiss, Andrew A., 1990. "Least absolute error estimation in the presence of serial correlation," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 127-158.
    16. Dufour, Jean-Marie & Valéry, Pascale, 2009. "Exact and asymptotic tests for possibly non-regular hypotheses on stochastic volatility models," Journal of Econometrics, Elsevier, vol. 150(2), pages 193-206, June.
    17. Dufour, Jean-Marie, 1990. "Exact Tests and Confidence Sets in Linear Regressions with Autocorrelated Errors," Econometrica, Econometric Society, vol. 58(2), pages 475-494, March.
    18. Phillips, P.C.B., 1991. "A Shortcut to LAD Estimator Asymptotics," Econometric Theory, Cambridge University Press, vol. 7(4), pages 450-463, December.
    19. Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(2), pages 186-199, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Jihyun & Meddahi, Nour, 2020. "Volatility regressions with fat tails," Journal of Econometrics, Elsevier, vol. 218(2), pages 690-713.
    2. Davide La Vecchia & Alban Moor & O. Scaillet, 2020. "A Higher-Order Correct Fast Moving-Average Bootstrap for Dependent Data," Swiss Finance Institute Research Paper Series 20-01, Swiss Finance Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dufour, Jean-Marie & Taamouti, Abderrahim, 2010. "Exact optimal inference in regression models under heteroskedasticity and non-normality of unknown form," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2532-2553, November.
    2. Luger, Richard, 2012. "Finite-sample bootstrap inference in GARCH models with heavy-tailed innovations," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3198-3211.
    3. Firmin Doko Tchatoka & Jean‐Marie Dufour, 2014. "Identification‐robust inference for endogeneity parameters in linear structural models," Econometrics Journal, Royal Economic Society, vol. 17(1), pages 165-187, February.
    4. Oberhofer, Walter & Haupt, Harry, 2003. "Nonlinear quantile regression under dependence and heterogeneity," University of Regensburg Working Papers in Business, Economics and Management Information Systems 388, University of Regensburg, Department of Economics.
    5. Taamouti, Abderrahim & Dufour, Jean-Marie, 2008. "Exact optimal and adaptive inference in regression models under heteroskedasticity and non-normality of unknown forms," UC3M Working papers. Economics we086027, Universidad Carlos III de Madrid. Departamento de Economía.
    6. White, Halbert & Kim, Tae-Hwan, 2002. "Estimation, Inference, and Specification Testing for Possibly Misspecified Quantile Regression," University of California at San Diego, Economics Working Paper Series qt1s38s0dn, Department of Economics, UC San Diego.
    7. Dufour, Jean-Marie & Neifar, Malika, 2002. "Méthodes d’inférence exactes pour des processus autorégressifs : une approche fondée sur des tests induits," L'Actualité Economique, Société Canadienne de Science Economique, vol. 78(1), pages 19-40, Mars.
    8. Tchatoka, Firmin Doko, 2015. "Subset Hypotheses Testing And Instrument Exclusion In The Linear Iv Regression," Econometric Theory, Cambridge University Press, vol. 31(6), pages 1192-1228, December.
    9. Wang, Wenjie & Doko Tchatoka, Firmin, 2018. "On Bootstrap inconsistency and Bonferroni-based size-correction for the subset Anderson–Rubin test under conditional homoskedasticity," Journal of Econometrics, Elsevier, vol. 207(1), pages 188-211.
    10. Komunjer, Ivana, 2005. "Quasi-maximum likelihood estimation for conditional quantiles," Journal of Econometrics, Elsevier, vol. 128(1), pages 137-164, September.
    11. Jean-Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 36(4), pages 767-808, November.
    12. Khalaf, Lynda & Urga, Giovanni, 2014. "Identification robust inference in cointegrating regressions," Journal of Econometrics, Elsevier, vol. 182(2), pages 385-396.
    13. Elise Coudin & Jean-Marie Dufour, 2010. "Finite and Large Sample Distribution-Free Inference in Median Regressions with Instrumental Variables," Working Papers 2010-56, Center for Research in Economics and Statistics.
    14. Tae-Hwan Kim & Christophe Muller, 2012. "Bias Transmission and Variance Reduction in Two-Stage Quantile Regression," Working Papers halshs-00793372, HAL.
    15. Uwe Hassler & Paulo M.M. Rodrigues & Antonio Rubia, 2016. "Quantile Regression for Long Memory Testing: A Case of Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 14(4), pages 693-724.
    16. Bolduc, Denis & Khalaf, Lynda & Yélou, Clément, 2010. "Identification robust confidence set methods for inference on parameter ratios with application to discrete choice models," Journal of Econometrics, Elsevier, vol. 157(2), pages 317-327, August.
    17. Jean‐Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 36(4), pages 767-808, November.
    18. Dufour, Jean-Marie, 2001. "Logique et tests d’hypothèses," L'Actualité Economique, Société Canadienne de Science Economique, vol. 77(2), pages 171-190, juin.
    19. Kristensen Johannes Tang, 2014. "Factor-based forecasting in the presence of outliers: Are factors better selected and estimated by the median than by the mean?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(3), pages 1-30, May.
    20. BEAULIEU, Marie-Claude & DUFOUR, Jean-Marie & KHALAF, Lynda, 2005. "Exact Multivariate Tests of Asset Pricing Models with Stable Asymmetric Distributions," Cahiers de recherche 2005-04, Universite de Montreal, Departement de sciences economiques.

    More about this item

    Keywords

    sign-based methods; median regression; test inversion; Hodges-Lehmann estimators; confidence distributions; p-value function; least absolute deviation estimators; quantile regressions; sign test; simultaneous inference; Monte Carlo tests; projection methods; non-normality; heteroskedasticity; serial dependence; GARCH; stochastic volatility;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mtl:montec:01-2017. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sharon BREWER). General contact details of provider: https://edirc.repec.org/data/cdmtlca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.