IDEAS home Printed from https://ideas.repec.org/p/cte/werepe/we086027.html
   My bibliography  Save this paper

Exact optimal and adaptive inference in regression models under heteroskedasticity and non-normality of unknown forms

Author

Listed:
  • Taamouti, Abderrahim
  • Dufour, Jean-Marie

Abstract

In this paper, we derive simple point-optimal sign-based tests in the context of linear and nonlinear regression models with fixed regressors. These tests are exact, distribution-free, robust against heteroskedasticity of unknown form, and they may be inverted to obtain confidence regions for the vector of unknown parameters. Since the point-optimal sign tests depend on the alternative hypothesis, we propose an adaptive approach based on split-sample techniques in order to choose an alternative such that the power of point-optimal sign tests is close to the power envelope. The simulation results show that when using approximately 10% of sample to estimate the alternative and the rest to calculate the test statistic, the power of point-optimal sign test is typically close to the power envelope. We present a Monte Carlo study to assess the performance of the proposed “quasi”-point-optimal sign test by comparing its size and power to those of some common tests which are supposed to be robust against heteroskedasticity. The results show that our procedures are superior.

Suggested Citation

  • Taamouti, Abderrahim & Dufour, Jean-Marie, 2008. "Exact optimal and adaptive inference in regression models under heteroskedasticity and non-normality of unknown forms," UC3M Working papers. Economics we086027, Universidad Carlos III de Madrid. Departamento de Economía.
  • Handle: RePEc:cte:werepe:we086027
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/bitstream/handle/10016/3201/we086027.pdf?sequence=1
    Download Restriction: no

    References listed on IDEAS

    as
    1. Jean-Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 36(4), pages 767-808, November.
    2. Jean-Marie Dufour & Mohamed Taamouti, 2005. "Projection-Based Statistical Inference in Linear Structural Models with Possibly Weak Instruments," Econometrica, Econometric Society, vol. 73(4), pages 1351-1365, July.
    3. Donald W.K. Andrews & James H. Stock, 2005. "Inference with Weak Instruments," Cowles Foundation Discussion Papers 1530, Cowles Foundation for Research in Economics, Yale University.
    4. Campbell, Bryan & Dufour, Jean-Marie, 1997. "Exact Nonparametric Tests of Orthogonality and Random Walk in the Presence of a Drift Parameter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 38(1), pages 151-173, February.
    5. Wright, Jonathan H, 2000. "Alternative Variance-Ratio Tests Using Ranks and Signs," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(1), pages 1-9, January.
    6. Dufour, Jean-Marie & Jasiak, Joann, 2001. "Finite Sample Limited Information Inference Methods for Structural Equations and Models with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(3), pages 815-843, August.
    7. Jansson, Michael, 2005. "Point optimal tests of the null hypothesis of cointegration," Journal of Econometrics, Elsevier, vol. 124(1), pages 187-201, January.
    8. Gregory Mankiw, N. & Shapiro, Matthew D., 1986. "Do we reject too often? : Small sample properties of tests of rational expectations models," Economics Letters, Elsevier, vol. 20(2), pages 139-145.
    9. Perron, Pierre & Rodriguez, Gabriel, 2003. "GLS detrending, efficient unit root tests and structural change," Journal of Econometrics, Elsevier, vol. 115(1), pages 1-27, July.
    10. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    11. Campbell, Bryan & Dufour, Jean-Marie, 1995. "Exact Nonparametric Orthogonality and Random Walk Tests," The Review of Economics and Statistics, MIT Press, vol. 77(1), pages 1-16, February.
    12. Elise Coudin & Jean-Marie Dufour, 2007. "Finite-sample Distribution-free Inference in Linear Median Regression under Heteroskedasticity and Nonlinear Dependence of Unknown Form," Working Papers 2007-38, Center for Research in Economics and Statistics.
    13. Touhami Abdelkhalek & Jean-Marie Dufour, 1998. "Statistical Inference For Computable General Equilibrium Models, With Application To A Model Of The Moroccan Economy," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 520-534, November.
    14. Benjamin M. Friedman & David I. Laibson, 1989. "Economic Implications of Extraordinary Movements in Stock Prices," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 20(2), pages 137-190.
    15. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
    16. Jean-Marie Dufour & Jan F. Kiviet, 1998. "Exact Inference Methods for First-Order Autoregressive Distributed Lag Models," Econometrica, Econometric Society, vol. 66(1), pages 79-104, January.
    17. Dufour, Jean-Marie & King, Maxwell L., 1991. "Optimal invariant tests for the autocorrelation coefficient in linear regressions with stationary or nonstationary AR(1) errors," Journal of Econometrics, Elsevier, vol. 47(1), pages 115-143, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Projection;

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:werepe:we086027. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda). General contact details of provider: http://www.eco.uc3m.es/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.