IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v17y2001i04p765-784_17.html
   My bibliography  Save this article

Asymptotically Efficient Median Regression In The Presence Of Heteroskedasticity Of Unknown Form

Author

Listed:
  • Zhao, Quanshui

Abstract

No abstract is available for this item.

Suggested Citation

  • Zhao, Quanshui, 2001. "Asymptotically Efficient Median Regression In The Presence Of Heteroskedasticity Of Unknown Form," Econometric Theory, Cambridge University Press, vol. 17(04), pages 765-784, August.
  • Handle: RePEc:cup:etheor:v:17:y:2001:i:04:p:765-784_17
    as

    Download full text from publisher

    File URL: http://journals.cambridge.org/abstract_S0266466601174050
    File Function: link to article abstract page
    Download Restriction: no

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Lingjie & Koenker, Roger, 2006. "Quantile regression methods for recursive structural equation models," Journal of Econometrics, Elsevier, vol. 134(2), pages 471-506, October.
    2. Hallin, M. & Vermandele, C. & Werker, B.J.M., 2003. "Serial and Nonserial Sign-and-Rank Statistics : Asymptotic Representation and Asymptotic Normality," Discussion Paper 2003-23, Tilburg University, Center for Economic Research.
    3. Otsu, Taisuke, 2008. "Conditional empirical likelihood estimation and inference for quantile regression models," Journal of Econometrics, Elsevier, vol. 142(1), pages 508-538, January.
    4. √Člise, COUDIN & Jean-Marie DUFOUR, 2017. "Finite-Sample Generalized Confidence Distributions and Sign-Based Robust Estimators in Median Regressions with Heterogeneous Dependent Errors," Cahiers de recherche 01-2017, Centre interuniversitaire de recherche en √©conomie quantitative, CIREQ.
    5. Komunjer, Ivana & Vuong, Quang, 2010. "Efficient estimation in dynamic conditional quantile models," Journal of Econometrics, Elsevier, vol. 157(2), pages 272-285, August.
    6. repec:eee:stapro:v:128:y:2017:i:c:p:28-34 is not listed on IDEAS
    7. Wu Wang & Zhongyi Zhu, 2017. "Conditional empirical likelihood for quantile regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(1), pages 1-16, January.
    8. Sweeney, Stuart & Davenport, Frank & Grace, Kathryn, 2013. "Combining insights from quantile and ordinal regression: Child malnutrition in Guatemala," Economics & Human Biology, Elsevier, vol. 11(2), pages 164-177.
    9. Oberhofer, Walter & Haupt, Harry, 2003. "Nonlinear quantile regression under dependence and heterogeneity," University of Regensburg Working Papers in Business, Economics and Management Information Systems 388, University of Regensburg, Department of Economics.
    10. Chen, Tao & Parker, Thomas, 2014. "Semiparametric efficiency for partially linear single-index regression models," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 376-386.
    11. Marilena Furno, 2012. "Tests for structural break in quantile regressions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(4), pages 493-515, October.
    12. Lingjie Ma & Larry Pohlman, 2008. "Return forecasts and optimal portfolio construction: a quantile regression approach," The European Journal of Finance, Taylor & Francis Journals, vol. 14(5), pages 409-425.
    13. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, Elsevier.
    14. He X. & Zhu L-X., 2003. "A Lack-of-Fit Test for Quantile Regression," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 1013-1022, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:17:y:2001:i:04:p:765-784_17. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters). General contact details of provider: http://journals.cambridge.org/jid_ECT .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.