IDEAS home Printed from https://ideas.repec.org/p/bay/rdwiwi/479.html
   My bibliography  Save this paper

Nonlinear quantile regression under dependence and heterogeneity

Author

Listed:
  • Oberhofer, Walter
  • Haupt, Harry

Abstract

This paper derives the asymptotic normality of the nonlinear quantile regression estimator with dependent errors. The required assumptions are weak, and it is neither assumed that the error process is stationary nor that it is mixing. In fact, the notion of weak dependence introduced in this paper, can be considered as a quantile specific local variant of known concepts. The connection of the derived asymptotic results to corresponding results of least squares estimation is obvious. In dieser Arbeit wird die asymptotische Normalität des nichtlinearen Quantilsregressionsschätzers bei abhängigen Fehlertermen bewiesen. Die Annahmen die dabei zu Grunde liegen sind sehr schwach, wobei gezeigt wird, dass weder die Stationarität noch eine Mixing-Eigenschaft des Fehlerprozesses erforderlich sind. Von besonderer Bedeutung ist die in diesem Papier eingeführte quantilsspezifische Form von schwacher Abhängigkeit, die als lokale Variante existierender Konzepte interpretiert werden kann. Zudem zeigt sich, dass die Asymptotik starke Parallelen zum Fall der Minimumquadratschätzung aufweist.

Suggested Citation

  • Oberhofer, Walter & Haupt, Harry, 2003. "Nonlinear quantile regression under dependence and heterogeneity," University of Regensburg Working Papers in Business, Economics and Management Information Systems 388, University of Regensburg, Department of Economics.
  • Handle: RePEc:bay:rdwiwi:479
    as

    Download full text from publisher

    File URL: https://epub.uni-regensburg.de/4505/1/DP388_OH.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Zhao, Quanshui, 2001. "Asymptotically Efficient Median Regression In The Presence Of Heteroskedasticity Of Unknown Form," Econometric Theory, Cambridge University Press, vol. 17(04), pages 765-784, August.
    2. Wooldridge, Jeffrey M. & White, Halbert, 1988. "Some Invariance Principles and Central Limit Theorems for Dependent Heterogeneous Processes," Econometric Theory, Cambridge University Press, vol. 4(02), pages 210-230, August.
    3. Weiss, Andrew A., 1991. "Estimating Nonlinear Dynamic Models Using Least Absolute Error Estimation," Econometric Theory, Cambridge University Press, vol. 7(01), pages 46-68, March.
    4. Mukherjee, Kanchan, 2000. "Linearization Of Randomly Weighted Empiricals Under Long Range Dependence With Applications To Nonlinear Regression Quantiles," Econometric Theory, Cambridge University Press, vol. 16(03), pages 301-323, June.
    5. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521608275, April.
    6. White,Halbert, 1996. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521574464, March.
    7. Koenker, Roger & Bassett, Gilbert, Jr, 1982. "Robust Tests for Heteroscedasticity Based on Regression Quantiles," Econometrica, Econometric Society, vol. 50(1), pages 43-61, January.
    8. Phillips, P.C.B., 1991. "A Shortcut to LAD Estimator Asymptotics," Econometric Theory, Cambridge University Press, vol. 7(04), pages 450-463, December.
    9. Nze, Patrick Ango & Doukhan, Paul, 2004. "Weak Dependence: Models And Applications To Econometrics," Econometric Theory, Cambridge University Press, vol. 20(06), pages 995-1045, December.
    10. Moshe Buchinsky, 1998. "Recent Advances in Quantile Regression Models: A Practical Guideline for Empirical Research," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 88-126.
    11. Ioannides, D. A., 2004. "Fixed design regression quantiles for time series," Statistics & Probability Letters, Elsevier, vol. 68(3), pages 235-245, July.
    12. De Gooijer J.G. & Zerom D., 2003. "On Additive Conditional Quantiles With High Dimensional Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 135-146, January.
    13. Koenker, Roger & Park, Beum J., 1996. "An interior point algorithm for nonlinear quantile regression," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 265-283.
    14. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    15. Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(02), pages 186-199, June.
    16. Cai, Zongwu, 2002. "Regression Quantiles For Time Series," Econometric Theory, Cambridge University Press, vol. 18(01), pages 169-192, February.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Quantil ; Nichtlineares Regressionsmodell ; Asymptotik; ; Quantile regression ; nonlinear regression ; asymptotics;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bay:rdwiwi:479. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Gernot Deinzer). General contact details of provider: http://edirc.repec.org/data/wfregde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.