IDEAS home Printed from
   My bibliography  Save this paper

Hodges-Lehmann Sign-based Estimators and Generalized Confidence Distributions in Linear Median Regressions with Moment-free Heterogenous Errors and Dependence of Unknown Form


  • Elise COUDIN, Jean-Marie DUFOUR



This paper develops sign-based estimation methods for the parameters of a median regression in finite samples.We introduce p-value functions that give the confidence one may have in a certain value of the parameter giventhe realization of the sample and sign-based estimators that are the values associated with the highest confidence(p-value). The sign-based estimators are thus obtained using the Hodges-Lehmann principle of test inversion.They are expected to present the same robustness properties than the test statistics they come from and canstraightly be associated with the finite-sample-based inference procedure described in Coudin and Dufour (2007).We also show they are median unbiased (under symmetry and estimator unicity) and present equivariancefeatures similar to the LAD estimator. Consistency under point identification and asymptotic normality areprovided and hold under weaker assumptions than the LAD estimator. However, small sample behavior is ourfirst interest. By a Monte Carlo study of bias and RMSE, we show sign-based estimators perform better than theLAD in very heteroskedastic settings.

Suggested Citation

  • Elise COUDIN, Jean-Marie DUFOUR, 2008. "Hodges-Lehmann Sign-based Estimators and Generalized Confidence Distributions in Linear Median Regressions with Moment-free Heterogenous Errors and Dependence of Unknown Form," Working Papers 2008-33, Center for Research in Economics and Statistics.
  • Handle: RePEc:crs:wpaper:2008-33

    Download full text from publisher

    File URL:
    File Function: Crest working paper version
    Download Restriction: no

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crs:wpaper:2008-33. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sri Srikandan). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.