IDEAS home Printed from https://ideas.repec.org/p/aim/wpaimx/1221.html
   My bibliography  Save this paper

Bias Transmission and Variance Reduction in Two-Stage Quantile Regression

Author

Listed:

Abstract

In this paper, we propose a variance reduction method for quantile regressions with endogeneity problems. First, we derive the asymptotic distribution of two-stage quantile estimators based on the fitted-value approach under very general conditions on both error terms and exogenous variables. Second, we exhibit a bias transmission property derived from the asymptotic representation of our estimator. Third, using a reformulation of the dependent variable, we improve the efficiency of the two-stage quantile estimators by exploiting a trade-off between an asymptotic bias confined to the intercept estimator and a reduction of the variance of the slope estimator. Monte Carlo simulation results show the excellent performance of our approach. In particular, by combining quantile regressions with first-stage trimmed least-squares estimators, we obtain more accurate slope estimates than 2SLS, 2SLAD and other estimators for a broad range of distributions.

Suggested Citation

  • Tae-Hwan Kim, & Christophe Muller, 2012. "Bias Transmission and Variance Reduction in Two-Stage Quantile Regression," AMSE Working Papers 1221, Aix-Marseille School of Economics, Marseille, France.
  • Handle: RePEc:aim:wpaimx:1221
    as

    Download full text from publisher

    File URL: http://www.amse-aixmarseille.fr/sites/default/files/_dt/2012/wp_2012_-_nr_21.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Andrew Chesher, 2003. "Identification in Nonseparable Models," Econometrica, Econometric Society, vol. 71(5), pages 1405-1441, September.
    2. Lee, Sokbae, 2007. "Endogeneity in quantile regression models: A control function approach," Journal of Econometrics, Elsevier, vol. 141(2), pages 1131-1158, December.
    3. Tae-Hwan Kim & Christophe Muller, 2004. "Two-stage quantile regression when the first stage is based on quantile regression," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 218-231, June.
    4. Koenker, Roger & Zhao, Quanshui, 1996. "Conditional Quantile Estimation and Inference for Arch Models," Econometric Theory, Cambridge University Press, vol. 12(05), pages 793-813, December.
    5. Kim T-H. & White H., 2001. "James-Stein-Type Estimators in Large Samples With Application to the Least Absolute Deviations Estimator," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 697-705, June.
    6. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, March.
    7. Angel López-Nicolás & Jaume García & Pedro J. Hernández, 2001. "How wide is the gap? An investigation of gender wage differences using quantile regression," Empirical Economics, Springer, vol. 26(1), pages 149-167.
    8. Portnoy, Stephen, 1991. "Asymptotic behavior of regression quantiles in non-stationary, dependent cases," Journal of Multivariate Analysis, Elsevier, vol. 38(1), pages 100-113, July.
    9. Alberto Abadie & Joshua Angrist & Guido Imbens, 2002. "Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings," Econometrica, Econometric Society, vol. 70(1), pages 91-117, January.
    10. Thanaset Chevapatrakul & Tae-Hwan Kim & Paul Mizen, 2009. "The Taylor Principle and Monetary Policy Approaching a Zero Bound on Nominal Rates: Quantile Regression Results for the United States and Japan," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(8), pages 1705-1723, December.
    11. Sakata, Shinichi, 2007. "Instrumental variable estimation based on conditional median restriction," Journal of Econometrics, Elsevier, vol. 141(2), pages 350-382, December.
    12. Omar Arias & Walter Sosa-Escudero & Kevin F. Hallock, 2001. "Individual heterogeneity in the returns to schooling: instrumental variables quantile regression using twins data," Empirical Economics, Springer, vol. 26(1), pages 7-40.
    13. Chernozhukov, Victor & Hansen, Christian, 2008. "Instrumental variable quantile regression: A robust inference approach," Journal of Econometrics, Elsevier, vol. 142(1), pages 379-398, January.
    14. Ma, Lingjie & Koenker, Roger, 2006. "Quantile regression methods for recursive structural equation models," Journal of Econometrics, Elsevier, vol. 134(2), pages 471-506, October.
    15. Chernozhukov, Victor & Hansen, Christian, 2008. "The reduced form: A simple approach to inference with weak instruments," Economics Letters, Elsevier, vol. 100(1), pages 68-71, July.
    16. Manganelli, Simone & White, Halbert & Kim, Tae-Hwan, 2008. "Modeling autoregressive conditional skewness and kurtosis with multi-quantile CAViaR," Working Paper Series 957, European Central Bank.
    17. Chernozhukov, Victor & Imbens, Guido W. & Newey, Whitney K., 2007. "Instrumental variable estimation of nonseparable models," Journal of Econometrics, Elsevier, vol. 139(1), pages 4-14, July.
    18. Powell, James L, 1983. "The Asymptotic Normality of Two-Stage Least Absolute Deviations Estimators," Econometrica, Econometric Society, vol. 51(5), pages 1569-1575, September.
    19. Chernozhukov, Victor & Hansen, Christian, 2006. "Instrumental quantile regression inference for structural and treatment effect models," Journal of Econometrics, Elsevier, vol. 132(2), pages 491-525, June.
    20. Honore, Bo E & Hu, Luojia, 2004. "On the Performance of Some Robust Instrumental Variables Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 30-39, January.
    21. Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(02), pages 186-199, June.
    22. Weiss, Andrew A., 1990. "Least absolute error estimation in the presence of serial correlation," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 127-158.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tae-Hwan Kim & Christophe Muller, 2015. "A Particular Form of Non-Constant Effect in Two-Stage Quantile Regression," Working papers 2015rwp-82, Yonsei University, Yonsei Economics Research Institute.
    2. Chevapatrakul, Thanaset & Tee, Kai-Hong, 2014. "The effects of news events on market contagion: Evidence from the 2007–2009 financial crisis," Research in International Business and Finance, Elsevier, vol. 32(C), pages 83-105.
    3. William Miles & Sam Schreyer, 2012. "Is monetary policy non-linear in Indonesia, Korea, Malaysia, and Thailand? A quantile regression analysis," Asian-Pacific Economic Literature, Asia Pacific School of Economics and Government, The Australian National University, vol. 26(2), pages 155-166, November.
    4. Tae-Hwan Kim & Christophe Muller, 2013. "A Test for Endogeneity in Conditional Quantiles," AMSE Working Papers 1342, Aix-Marseille School of Economics, Marseille, France, revised Aug 2013.
    5. Christophe Muller, 2017. "Heterogeneity and Non-Constant Effect in Two-Stage Quantile Regression," Working Papers halshs-01157552, HAL.
    6. Thanaset Chevapatrakul & Kai-Hong Tee, 2014. "The Effects of News Events on Market Contagion: Evidence from the 2007-2009 Financial Crisis," Discussion Papers 2014/08, University of Nottingham, Centre for Finance, Credit and Macroeconomics (CFCM).
    7. Thanaset Chevapatrakul & Tae-Hwan Kim & Paul Mizen, 2009. "The Taylor Principle and Monetary Policy Approaching a Zero Bound on Nominal Rates: Quantile Regression Results for the United States and Japan," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(8), pages 1705-1723, December.
    8. Tae-Hwan Kim & Christophe Muller, 2017. "A robust test of exogeneity based on quantile regressions," Post-Print hal-01647506, HAL.
    9. Thanaset Chevapatrakul & Juan Paez-Farrell, 2014. "Monetary Policy Reaction Functions in Small Open Economies: a Quantile Regression Approach," Manchester School, University of Manchester, vol. 82(2), pages 237-256, March.

    More about this item

    Keywords

    Two-Stage Estimation; Variance Reduction; Quantile Regression; Asymptotic Bias.;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aim:wpaimx:1221. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Yves Doazan). General contact details of provider: http://edirc.repec.org/data/maseafr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.