IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

James-Stein Type Estimators in Large Samples with Application to the Least Absolute Deviations Estimator

Listed author(s):
  • Kim, Tae-Hwan
  • White, Halbert

We explore the extension of James-Stein type estimators in a direction that enables them to preserve their superiority when the sample size goes to infinity. Instead of shrinking a base estimator towards a fixed point, we shrink it towards a data-dependent point. We provide an analytic expression for the asymptotic risk and bias of James-Stein type estimators shrunk towards a data-dependent point and prove that they have smaller asymptotic risk than the base estimator. Shrinking an estimator toward a data-dependent point turns out to be equivalent to combining two random variables using the James-Stein rule. We propose a general combination scheme which includes random combination (the James-Stein combination) and the usual nonrandom combination as special cases. As an example, we apply our method to combine the Least Absolute Deviations estimator and the Least Squares estimator. Our simulation study indicates that the resulting combination estimators have desirable finite sample properties when errors are drawn from symmetric distributions. Finally, using stock return data we present some empirical evidence that the combination estimators have the potential to improve out-of-sample prediction in terms of both mean square error and mean absolute error.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:;origin=repeccitec
Download Restriction: no

Paper provided by Department of Economics, UC San Diego in its series University of California at San Diego, Economics Working Paper Series with number qt4zq9k3qh.

in new window

Date of creation: 01 May 2000
Handle: RePEc:cdl:ucsdec:qt4zq9k3qh
Contact details of provider: Postal:
9500 Gilman Drive, La Jolla, CA 92093-0508

Phone: (858) 534-3383
Fax: (858) 534-7040
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Bates, Charles E. & White, Halbert, 1993. "Determination of Estimators with Minimum Asymptotic Covariance Matrices," Econometric Theory, Cambridge University Press, vol. 9(04), pages 633-648, August.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cdl:ucsdec:qt4zq9k3qh. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lisa Schiff)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.