IDEAS home Printed from https://ideas.repec.org/p/vic/vicewp/0701.html
   My bibliography  Save this paper

On Weighted Estimation in Linear Regression in th Presence of Parameter Uncertainty

Author

Abstract

We consider estimating the linear regression model’s coefficients when there is uncertainty about coefficient restrictions. Theorems establish that the mean squared errors of combination estimators, formed as weighted averages of the ordinary least squares and one or more restricted least squares estimators, depend on finding the optimal estimator of a single normally distributed vector. Our results generalize those of Magnus and Durbin (1999) [Magnus, J.R., Durbin, J. 1999. Estimation of regression coefficients of interest when other regression coefficients are of no interest. Econometrica 67, 639-643] and Danilov and Magnus (2004) [Danilov, D., Magnus, J.R. 2004. On the harm that ignoring pretesting can cause. Journal of Econometrics 122, 27-46].

Suggested Citation

  • Judith A. Clarke, 2007. "On Weighted Estimation in Linear Regression in th Presence of Parameter Uncertainty," Econometrics Working Papers 0701, Department of Economics, University of Victoria.
  • Handle: RePEc:vic:vicewp:0701
    Note: ISSN 1485-6441
    as

    Download full text from publisher

    File URL: https://www.uvic.ca/socialsciences/economics/_assets/docs/econometrics/ewp0701.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kim T-H. & White H., 2001. "James-Stein-Type Estimators in Large Samples With Application to the Least Absolute Deviations Estimator," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 697-705, June.
    2. Jan R. Magnus & J. Durbin, 1999. "Estimation of Regression Coefficients of Interest When Other Regression Coefficients Are of No Interest," Econometrica, Econometric Society, vol. 67(3), pages 639-644, May.
    3. Giles, Judith A & Giles, David E A, 1993. "Pre-test Estimation and Testing in Econometrics: Recent Developments," Journal of Economic Surveys, Wiley Blackwell, vol. 7(2), pages 145-197, June.
    4. Jan R. Magnus, 2002. "Estimation of the mean of a univariate normal distribution with known variance," Econometrics Journal, Royal Economic Society, vol. 5(1), pages 225-236, June.
    5. Zou, Guohua & Wan, Alan T.K. & Wu, Xiaoyong & Chen, Ti, 2007. "Estimation of regression coefficients of interest when other regression coefficients are of no interest: The case of non-normal errors," Statistics & Probability Letters, Elsevier, vol. 77(8), pages 803-810, April.
    6. Dmitry Danilov, 2005. "Estimation of the mean of a univariate normal distribution when the variance is not known," Econometrics Journal, Royal Economic Society, vol. 8(3), pages 277-291, December.
    7. Danilov, Dmitry & Magnus, J.R.Jan R., 2004. "On the harm that ignoring pretesting can cause," Journal of Econometrics, Elsevier, vol. 122(1), pages 27-46, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Judith Anne Clarke, 2017. "Model Averaging OLS and 2SLS: An Application of the WALS Procedure," Econometrics Working Papers 1701, Department of Economics, University of Victoria.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Judith Anne Clarke, 2017. "Model Averaging OLS and 2SLS: An Application of the WALS Procedure," Econometrics Working Papers 1701, Department of Economics, University of Victoria.
    2. Jan R. Magnus & Wendun Wang & Xinyu Zhang, 2016. "Weighted-Average Least Squares Prediction," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1040-1074, June.
    3. Giuseppe De Luca & Jan R. Magnus, 2011. "Bayesian model averaging and weighted-average least squares: Equivariance, stability, and numerical issues," Stata Journal, StataCorp LP, vol. 11(4), pages 518-544, December.
    4. De Luca, Giuseppe & Magnus, Jan R. & Peracchi, Franco, 2018. "Weighted-average least squares estimation of generalized linear models," Journal of Econometrics, Elsevier, vol. 204(1), pages 1-17.
    5. Magnus, Jan R. & Powell, Owen & Prüfer, Patricia, 2010. "A comparison of two model averaging techniques with an application to growth empirics," Journal of Econometrics, Elsevier, vol. 154(2), pages 139-153, February.
    6. Zou, Guohua & Wan, Alan T.K. & Wu, Xiaoyong & Chen, Ti, 2007. "Estimation of regression coefficients of interest when other regression coefficients are of no interest: The case of non-normal errors," Statistics & Probability Letters, Elsevier, vol. 77(8), pages 803-810, April.
    7. Magnus, J.R. & Powell, O.R. & Prüfer, P., 2008. "A Comparison of Two Averaging Techniques with an Application to Growth Empirics," Other publications TiSEM 0392dffa-51e0-4bc9-9644-f, Tilburg University, School of Economics and Management.
    8. Aedın Doris & Donal O’Neill & Olive Sweetman, 2011. "GMM estimation of the covariance structure of longitudinal data on earnings," Stata Journal, StataCorp LP, vol. 11(3), pages 439-459, September.
    9. Ali Mehrabani & Aman Ullah, 2022. "Weighted Average Estimation in Panel Data," Working Papers 202209, University of California at Riverside, Department of Economics, revised Apr 2022.
    10. De Luca, Giuseppe & Magnus, Jan R. & Peracchi, Franco, 2022. "Sampling properties of the Bayesian posterior mean with an application to WALS estimation," Journal of Econometrics, Elsevier, vol. 230(2), pages 299-317.
    11. Danilov, D.L. & Magnus, J.R., 2002. "Estimation of the Mean of a Univariate Normal Distribution When the Variance is not Known," Discussion Paper 2002-77, Tilburg University, Center for Economic Research.
    12. Jan R. Magnus & Dmitry Danilov, 2004. "Forecast accuracy after pretesting with an application to the stock market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(4), pages 251-274.
    13. Magnus, Jan & Peresetsky, Anatoly, 2010. "The price of Moscow apartments," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 17(1), pages 89-105.
    14. Einmahl, J.H.J. & Magnus, J.R. & Kumar, K., 2011. "On the Choice of Prior in Bayesian Model Averaging," Discussion Paper 2011-003, Tilburg University, Center for Economic Research.
    15. Magnus, Jan R. & Wan, Alan T.K. & Zhang, Xinyu, 2011. "Weighted average least squares estimation with nonspherical disturbances and an application to the Hong Kong housing market," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1331-1341, March.
    16. Reif, Jiri, 2007. "Asymptotic behaviour of regression pre-test estimators with minimal Bayes risk," Journal of Econometrics, Elsevier, vol. 140(2), pages 413-424, October.
    17. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    18. Srdelić, Leonarda & Dávila-Fernández, Marwil J., 2024. "International trade and economic growth in Croatia," Structural Change and Economic Dynamics, Elsevier, vol. 68(C), pages 240-258.
    19. Becker William & Paruolo Paolo & Saltelli Andrea, 2021. "Variable Selection in Regression Models Using Global Sensitivity Analysis," Journal of Time Series Econometrics, De Gruyter, vol. 13(2), pages 187-233, July.
    20. Nicolas End, 2020. "Rousseau's social contract or Machiavelli's virtue? A measure of fiscal credibility," Working Papers halshs-03078704, HAL.

    More about this item

    Keywords

    Logit; Mean squared error; weighted estimaor; linear restrictions;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vic:vicewp:0701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kali Moon (email available below). General contact details of provider: https://edirc.repec.org/data/devicca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.