IDEAS home Printed from https://ideas.repec.org/a/bpj/jtsmet/v13y2021i2p187-233n5.html
   My bibliography  Save this article

Variable Selection in Regression Models Using Global Sensitivity Analysis

Author

Listed:
  • Becker William

    (European Commission, Joint Research Centre, Ispra, VA, Italy)

  • Paruolo Paolo

    (European Commission, Joint Research Centre, Ispra, VA, Italy)

  • Saltelli Andrea

    (Centre for the Study of the Sciences and the Humanities, University of Bergen, Bergen, Norway)

Abstract

Global sensitivity analysis is primarily used to investigate the effects of uncertainties in the input variables of physical models on the model output. This work investigates the use of global sensitivity analysis tools in the context of variable selection in regression models. Specifically, a global sensitivity measure is applied to a criterion of model fit, hence defining a ranking of regressors by importance; a testing sequence based on the ‘Pantula-principle’ is then applied to the corresponding nested submodels, obtaining a novel model-selection method. The approach is demonstrated on a growth regression case study, and on a number of simulation experiments, and it is found competitive with existing approaches to variable selection.

Suggested Citation

  • Becker William & Paruolo Paolo & Saltelli Andrea, 2021. "Variable Selection in Regression Models Using Global Sensitivity Analysis," Journal of Time Series Econometrics, De Gruyter, vol. 13(2), pages 187-233, July.
  • Handle: RePEc:bpj:jtsmet:v:13:y:2021:i:2:p:187-233:n:5
    DOI: 10.1515/jtse-2018-0025
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jtse-2018-0025
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/jtse-2018-0025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paolo Paruolo & Michaela Saisana & Andrea Saltelli, 2013. "Ratings and rankings: voodoo or science?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 176(3), pages 609-634, June.
    2. Kevin D. Hoover & Stephen J. Perez, 1999. "Data mining reconsidered: encompassing and the general-to-specific approach to specification search," Econometrics Journal, Royal Economic Society, vol. 2(2), pages 167-191.
    3. Joseph P. Romano & Michael Wolf, 2005. "Stepwise Multiple Testing as Formalized Data Snooping," Econometrica, Econometric Society, vol. 73(4), pages 1237-1282, July.
    4. Krolzig, Hans-Martin & Hendry, David F., 2001. "Computer automation of general-to-specific model selection procedures," Journal of Economic Dynamics and Control, Elsevier, vol. 25(6-7), pages 831-866, June.
    5. Karim M. Abadir & Jan R. Magnus, 2002. "Notation in econometrics: a proposal for a standard," Econometrics Journal, Royal Economic Society, vol. 5(1), pages 76-90, June.
    6. Paolo Paruolo, 2001. "The Power of Lambda Max," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 63(3), pages 395-403, July.
    7. Paruolo, Paolo & Rahbek, Anders, 1999. "Weak exogeneity in I(2) VAR systems," Journal of Econometrics, Elsevier, vol. 93(2), pages 281-308, December.
    8. Joseph Romano & Azeem Shaikh & Michael Wolf, 2008. "Control of the false discovery rate under dependence using the bootstrap and subsampling," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(3), pages 417-442, November.
    9. Thomas Deckers & Christoph Hanck, 2014. "Variable Selection in Cross-Section Regressions: Comparisons and Extensions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(6), pages 841-873, December.
    10. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    11. Saltelli A. & Tarantola S., 2002. "On the Relative Importance of Input Factors in Mathematical Models: Safety Assessment for Nuclear Waste Disposal," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 702-709, September.
    12. Magnus, Jan R. & Powell, Owen & Prüfer, Patricia, 2010. "A comparison of two model averaging techniques with an application to growth empirics," Journal of Econometrics, Elsevier, vol. 154(2), pages 139-153, February.
    13. Jostein Paulsen, 1984. "Order Determination Of Multivariate Autoregressive Time Series With Unit Roots," Journal of Time Series Analysis, Wiley Blackwell, vol. 5(2), pages 115-127, March.
    14. Jan R. Magnus & J. Durbin, 1999. "Estimation of Regression Coefficients of Interest When Other Regression Coefficients Are of No Interest," Econometrica, Econometric Society, vol. 67(3), pages 639-644, May.
    15. Joseph Romano & Azeem Shaikh & Michael Wolf, 2008. "Rejoinder on: Control of the false discovery rate under dependence using the bootstrap and subsampling," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(3), pages 461-471, November.
    16. Claeskens G. & Hjort N.L., 2003. "The Focused Information Criterion," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 900-916, January.
    17. Saltelli, A. & Andres, T. H. & Homma, T., 1993. "Sensitivity analysis of model output : An investigation of new techniques," Computational Statistics & Data Analysis, Elsevier, vol. 15(2), pages 211-238, February.
    18. Marcel Boumans, 2016. "Econometrics," Chapters, in: Gilbert Faccarello & Heinz D. Kurz (ed.), Handbook on the History of Economic Analysis Volume III, chapter 9, pages 106-116, Edward Elgar Publishing.
    19. Danilov, Dmitry & Magnus, J.R.Jan R., 2004. "On the harm that ignoring pretesting can cause," Journal of Econometrics, Elsevier, vol. 122(1), pages 27-46, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maroli, John M., 2023. "Generating discrete dynamical system equations from input–output data using neural network identification models," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Luca, Giuseppe & Magnus, Jan R. & Peracchi, Franco, 2018. "Weighted-average least squares estimation of generalized linear models," Journal of Econometrics, Elsevier, vol. 204(1), pages 1-17.
    2. Jan R. Magnus & Wendun Wang & Xinyu Zhang, 2016. "Weighted-Average Least Squares Prediction," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1040-1074, June.
    3. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    4. Srdelić, Leonarda & Dávila-Fernández, Marwil J., 2024. "International trade and economic growth in Croatia," Structural Change and Economic Dynamics, Elsevier, vol. 68(C), pages 240-258.
    5. Giuseppe De Luca & Jan R. Magnus, 2011. "Bayesian model averaging and weighted-average least squares: Equivariance, stability, and numerical issues," Stata Journal, StataCorp LP, vol. 11(4), pages 518-544, December.
    6. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    7. Nicolas End, 2020. "Rousseau's social contract or Machiavelli's virtue? A measure of fiscal credibility," Working Papers halshs-03078704, HAL.
    8. John A. List & Azeem M. Shaikh & Yang Xu, 2019. "Multiple hypothesis testing in experimental economics," Experimental Economics, Springer;Economic Science Association, vol. 22(4), pages 773-793, December.
    9. Christophe Hurlin & Sébastien Laurent & Rogier Quaedvlieg & Stephan Smeekes, 2017. "Risk Measure Inference," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 499-512, October.
    10. John A. List & Azeem M. Shaikh & Atom Vayalinkal, 2023. "Multiple testing with covariate adjustment in experimental economics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(6), pages 920-939, September.
    11. Karen Poghosyan & Jan R. Magnus, 2012. "WALS Estimation and Forecasting in Factor-based Dynamic Models with an Application to Armenia," International Econometric Review (IER), Econometric Research Association, vol. 4(1), pages 40-58, April.
    12. Jan R. Magnus & Dmitry Danilov, 2004. "Forecast accuracy after pretesting with an application to the stock market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(4), pages 251-274.
    13. Dardanoni, Valentino & Modica, Salvatore & Peracchi, Franco, 2011. "Regression with imputed covariates: A generalized missing-indicator approach," Journal of Econometrics, Elsevier, vol. 162(2), pages 362-368, June.
    14. Xinyu Zhang & Alan T. K. Wan & Sherry Z. Zhou, 2011. "Focused Information Criteria, Model Selection, and Model Averaging in a Tobit Model With a Nonzero Threshold," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 132-142, June.
    15. Dardanoni, Valentino & De Luca, Giuseppe & Modica, Salvatore & Peracchi, Franco, 2015. "Model averaging estimation of generalized linear models with imputed covariates," Journal of Econometrics, Elsevier, vol. 184(2), pages 452-463.
    16. Christoph Hanck, 2016. "I just ran two trillion regressions," Economics Bulletin, AccessEcon, vol. 36(4), pages 2037-2042.
    17. Srdelic, Leonarda & Davila-Fernandez, Marwil J., 2022. "Demographic transition and economic growth in 6-EU member states," MPRA Paper 112188, University Library of Munich, Germany.
    18. Tumala, Mohammed M & Olubusoye, Olusanya E & Yaaba, Baba N & Yaya, OlaOluwa S & Akanbi, Olawale B, 2017. "Investigating Predictors of Inflation in Nigeria: BMA and WALS Techniques," MPRA Paper 88773, University Library of Munich, Germany, revised Feb 2018.
    19. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Stephan Smeekes, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 398-415, May.
    20. Judith Anne Clarke, 2017. "Model Averaging OLS and 2SLS: An Application of the WALS Procedure," Econometrics Working Papers 1701, Department of Economics, University of Victoria.

    More about this item

    Keywords

    model selection; Monte Carlo; sensitivity analysis; simulation;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jtsmet:v:13:y:2021:i:2:p:187-233:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.