Sampling properties of the Bayesian posterior mean with an application to WALS estimation
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- De Luca, Giuseppe & Magnus, Jan R. & Peracchi, Franco, 2022. "Sampling properties of the Bayesian posterior mean with an application to WALS estimation," Journal of Econometrics, Elsevier, vol. 230(2), pages 299-317.
- Giuseppe De Luca & Jan R. Magnus & Franco Peracchi, 2020. "Sampling properties of the Bayesian posterior mean with anapplication to WALS estimation," EIEF Working Papers Series 2003, Einaudi Institute for Economics and Finance (EIEF), revised Mar 2020.
References listed on IDEAS
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Lee, Jaeyong & Oh, Hee-Seok, 2013. "Bayesian regression based on principal components for high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 175-192.
- Zhang, Xinyu & Liu, Chu-An, 2019.
"Inference After Model Averaging In Linear Regression Models,"
Econometric Theory, Cambridge University Press, vol. 35(4), pages 816-841, August.
- Xinyu Zhang & Chu-An Liu, 2017. "Inference after Model Averaging in Linear Regression Models," IEAS Working Paper : academic research 17-A005, Institute of Economics, Academia Sinica, Taipei, Taiwan, revised Apr 2018.
- Giuseppe De Luca & Jan R. Magnus & Franco Peracchi, 2021.
"Posterior moments and quantiles for the normal location model with Laplace prior,"
Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 50(17), pages 4039-4049, August.
- Giuseppe De Luca & Jan R. Magnus & Franco Peracchi, 2019. "Posterior moments and quantiles for the normal location model with Laplace prior," EIEF Working Papers Series 1911, Einaudi Institute for Economics and Finance (EIEF), revised Jun 2019.
- John J. Donohue III & Steven D. Levitt, 2001.
"The Impact of Legalized Abortion on Crime,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 116(2), pages 379-420.
- Donohue, John J. & Levitt, Steven D., 2000. "The Impact of Legalized Abortion on Crime," Berkeley Olin Program in Law & Economics, Working Paper Series qt00p599hk, Berkeley Olin Program in Law & Economics.
- John Donohue & Steven Levitt, 2000. "The Impact of Legalized Abortion on Crime," NBER Working Papers 8004, National Bureau of Economic Research, Inc.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "Inference on Treatment Effects after Selection among High-Dimensional Controlsâ€," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(2), pages 608-650.
- Enrique Moral-Benito, 2012.
"Determinants of Economic Growth: A Bayesian Panel Data Approach,"
The Review of Economics and Statistics, MIT Press, vol. 94(2), pages 566-579, May.
- Enrique Moral-Benito, 2007. "Determinants of Economic Growth: A Bayesian Panel Data Approach," Working Papers wp2007_0719, CEMFI.
- Moral-Benito, Enrique, 2009. "Determinants of Economic Growth: A Bayesian Panel Data Approach," Policy Research Working Paper Series 4830, The World Bank.
- Enrique Moral-Benito, 2010. "Determinants of economic growth: A Bayesian panel data approach," Working Papers 1031, Banco de España.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014.
"High-Dimensional Methods and Inference on Structural and Treatment Effects,"
Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 29-50, Spring.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2013. "High dimensional methods and inference on structural and treatment effects," CeMMAP working papers CWP59/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2013. "High dimensional methods and inference on structural and treatment effects," CeMMAP working papers 59/13, Institute for Fiscal Studies.
- Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
- Magnus, Jan R. & Wan, Alan T.K. & Zhang, Xinyu, 2011. "Weighted average least squares estimation with nonspherical disturbances and an application to the Hong Kong housing market," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1331-1341, March.
- Jan R. Magnus & Giuseppe De Luca, 2016. "Weighted-Average Least Squares (Wals): A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 30(1), pages 117-148, February.
- Claeskens,Gerda & Hjort,Nils Lid, 2008. "Model Selection and Model Averaging," Cambridge Books, Cambridge University Press, number 9780521852258, October.
- Bradley Efron, 2015. "Frequentist accuracy of Bayesian estimates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(3), pages 617-646, June.
- Mark F. J. Steel, 2020.
"Model Averaging and Its Use in Economics,"
Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
- Steel, Mark F. J., 2017. "Model Averaging and its Use in Economics," MPRA Paper 81568, University Library of Munich, Germany.
- Steel, Mark F. J., 2017. "Model Averaging and its Use in Economics," MPRA Paper 90110, University Library of Munich, Germany, revised 16 Nov 2018.
- Christopher L. Foote & Christopher F. Goetz, 2008. "The Impact of Legalized Abortion on Crime: Comment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 123(1), pages 407-423.
- Wright, Jonathan H., 2008.
"Bayesian Model Averaging and exchange rate forecasts,"
Journal of Econometrics, Elsevier, vol. 146(2), pages 329-341, October.
- Jonathan H. Wright, 2003. "Bayesian Model Averaging and exchange rate forecasts," International Finance Discussion Papers 779, Board of Governors of the Federal Reserve System (U.S.).
- Bruce E. Hansen, 2014. "Model averaging, asymptotic risk, and regressor groups," Quantitative Economics, Econometric Society, vol. 5(3), pages 495-530, November.
- Dmitry Danilov, 2005. "Estimation of the mean of a univariate normal distribution when the variance is not known," Econometrics Journal, Royal Economic Society, vol. 8(3), pages 277-291, December.
- Magnus, Jan R. & Powell, Owen & Prüfer, Patricia, 2010. "A comparison of two model averaging techniques with an application to growth empirics," Journal of Econometrics, Elsevier, vol. 154(2), pages 139-153, February.
- De Luca, Giuseppe & Magnus, Jan R. & Peracchi, Franco, 2018.
"Weighted-average least squares estimation of generalized linear models,"
Journal of Econometrics, Elsevier, vol. 204(1), pages 1-17.
- Giuseppe de Luca & Jan Magnus & Franco Peracchi, 2017. "Weighted-Average Least Squares Estimation of Generalized Linear Models," Tinbergen Institute Discussion Papers 17-029/III, Tinbergen Institute.
- Giuseppe De Luca & Jan R. Magnus & Franco Peracchi, 2017. "Weighted-average least squares estimation of generalized linear models," EIEF Working Papers Series 1711, Einaudi Institute for Economics and Finance (EIEF), revised Aug 2017.
- Jan R. Magnus & J. Durbin, 1999. "Estimation of Regression Coefficients of Interest When Other Regression Coefficients Are of No Interest," Econometrica, Econometric Society, vol. 67(3), pages 639-644, May.
- Xavier Sala-I-Martin & Gernot Doppelhofer & Ronald I. Miller, 2004.
"Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach,"
American Economic Review, American Economic Association, vol. 94(4), pages 813-835, September.
- Gernot Doppelhofer & Ronald I. Miller & Xavier Sala-i-Martin, 2000. "Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (Bace) Approach," OECD Economics Department Working Papers 266, OECD Publishing.
- Gernot Doppelhofer & Ronald I. Miller & Xavier Sala-i-Martin, 2000. "Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach," NBER Working Papers 7750, National Bureau of Economic Research, Inc.
- Liang, Hua & Zou, Guohua & Wan, Alan T. K. & Zhang, Xinyu, 2011. "Optimal Weight Choice for Frequentist Model Average Estimators," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1053-1066.
- Jan R. Magnus, 2002. "Estimation of the mean of a univariate normal distribution with known variance," Econometrics Journal, Royal Economic Society, vol. 5(1), pages 225-236, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Giuseppe Luca & Jan R. Magnus & Franco Peracchi, 2023.
"Weighted-Average Least Squares (WALS): Confidence and Prediction Intervals,"
Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1637-1664, April.
- Giuseppe De Luca & Jan R. Magnus & Franco Peracchi, 2021. "Weighted-average least squares (WALS): Confidence and prediction intervals," EIEF Working Papers Series 2108, Einaudi Institute for Economics and Finance (EIEF), revised May 2021.
- Giuseppe De Luca & Jan R. Magnus & Franco Peracchi, 2021. "Weighted-average least squares (WALS): Confidence and prediction intervals," Tinbergen Institute Discussion Papers 21-038/III, Tinbergen Institute.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Giuseppe Luca & Jan R. Magnus & Franco Peracchi, 2023.
"Weighted-Average Least Squares (WALS): Confidence and Prediction Intervals,"
Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1637-1664, April.
- Giuseppe De Luca & Jan R. Magnus & Franco Peracchi, 2021. "Weighted-average least squares (WALS): Confidence and prediction intervals," EIEF Working Papers Series 2108, Einaudi Institute for Economics and Finance (EIEF), revised May 2021.
- Giuseppe De Luca & Jan R. Magnus & Franco Peracchi, 2021. "Weighted-average least squares (WALS): Confidence and prediction intervals," Tinbergen Institute Discussion Papers 21-038/III, Tinbergen Institute.
- Judith Anne Clarke, 2017. "Model Averaging OLS and 2SLS: An Application of the WALS Procedure," Econometrics Working Papers 1701, Department of Economics, University of Victoria.
- Giuseppe De Luca & Jan Magnus & Franco Peracchi, 2022.
"Asymptotic properties of the weighted average least squares (WALS) estimator,"
Tinbergen Institute Discussion Papers
22-022/III, Tinbergen Institute.
- Giuseppe De Luca & Jan R. Magnus & Franco Peracchi, 2022. "Asymptotic properties of the weighted-average least squares (WALS) estimator," EIEF Working Papers Series 2203, Einaudi Institute for Economics and Finance (EIEF), revised Mar 2022.
- Mark F. J. Steel, 2020.
"Model Averaging and Its Use in Economics,"
Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
- Steel, Mark F. J., 2017. "Model Averaging and its Use in Economics," MPRA Paper 81568, University Library of Munich, Germany.
- Steel, Mark F. J., 2017. "Model Averaging and its Use in Economics," MPRA Paper 90110, University Library of Munich, Germany, revised 16 Nov 2018.
- Rockey, James & Temple, Jonathan, 2016.
"Growth econometrics for agnostics and true believers,"
European Economic Review, Elsevier, vol. 81(C), pages 86-102.
- James Rockey & Jonathan Temple, 2015. "Growth Econometrics for Agnostics and True Believers," Bristol Economics Discussion Papers 15/656, School of Economics, University of Bristol, UK.
- Temple, Jonathan & Rockey, James, 2015. "Growth Econometrics for Agnostics and True Believers," CEPR Discussion Papers 10590, C.E.P.R. Discussion Papers.
- De Luca, Giuseppe & Magnus, Jan R. & Peracchi, Franco, 2018.
"Weighted-average least squares estimation of generalized linear models,"
Journal of Econometrics, Elsevier, vol. 204(1), pages 1-17.
- Giuseppe De Luca & Jan R. Magnus & Franco Peracchi, 2017. "Weighted-average least squares estimation of generalized linear models," EIEF Working Papers Series 1711, Einaudi Institute for Economics and Finance (EIEF), revised Aug 2017.
- Giuseppe de Luca & Jan Magnus & Franco Peracchi, 2017. "Weighted-Average Least Squares Estimation of Generalized Linear Models," Tinbergen Institute Discussion Papers 17-029/III, Tinbergen Institute.
- Jan R. Magnus & Wendun Wang & Xinyu Zhang, 2016. "Weighted-Average Least Squares Prediction," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1040-1074, June.
- Giuseppe De Luca & Jan R. Magnus, 2011.
"Bayesian model averaging and weighted-average least squares: Equivariance, stability, and numerical issues,"
Stata Journal, StataCorp LP, vol. 11(4), pages 518-544, December.
- De Luca, G. & Magnus, J.R., 2011. "Bayesian Model Averaging and Weighted Average Least Squares : Equivariance, Stability, and Numerical Issues," Discussion Paper 2011-082, Tilburg University, Center for Economic Research.
- De Luca, G. & Magnus, J.R., 2011. "Bayesian Model Averaging and Weighted Average Least Squares : Equivariance, Stability, and Numerical Issues," Other publications TiSEM 3aa66f2e-55c5-4ddb-8acf-7, Tilburg University, School of Economics and Management.
- Aedın Doris & Donal O’Neill & Olive Sweetman, 2011. "GMM estimation of the covariance structure of longitudinal data on earnings," Stata Journal, StataCorp LP, vol. 11(3), pages 439-459, September.
- Yin-Wong Cheung & Wenhao Wang, 2020.
"A Jackknife Model Averaging Analysis of RMB Misalignment Estimates,"
Journal of International Commerce, Economics and Policy (JICEP), World Scientific Publishing Co. Pte. Ltd., vol. 11(02), pages 1-45, June.
- Yin-Wong Cheung & Wenhao Wang, 2019. "A Jackknife Model Averaging Analysis of RMB Misalignment Estimates," IEER Working Papers 116, Institute of Empirical Economic Research, Osnabrueck University.
- Yin-Wong Cheung & Wenhao Wang, 2019. "A Jackknife Model Averaging Analysis of RMB Misalignment Estimates," CESifo Working Paper Series 7840, CESifo.
- Moral-Benito, Enrique, 2010.
"Model averaging in economics,"
MPRA Paper
26047, University Library of Munich, Germany.
- Enrique Moral-Benito, 2011. "Model averaging in economics," Working Papers 1123, Banco de España.
- Enrique Moral-Benito, 2010. "Model Averaging in Economics," Working Papers wp2010_1008, CEMFI.
- Qingfeng Liu & Ryo Okui & Arihiro Yoshimura, 2016.
"Generalized Least Squares Model Averaging,"
Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1692-1752, December.
- Qingfeng Liu & Ryo Okui & Arihiro Yoshimura, 2013. "Generalized Least Squares Model Averaging," KIER Working Papers 855, Kyoto University, Institute of Economic Research.
- Berger, Michael & Pock, Markus & Reiss, Miriam & Röhrling, Gerald & Czypionka, Thomas, 2023. "Exploring the effectiveness of demand-side retail pharmaceutical expenditure reforms: cross-country evidence from weighted-average least squares estimation," LSE Research Online Documents on Economics 116928, London School of Economics and Political Science, LSE Library.
- Michael Berger & Markus Pock & Miriam Reiss & Gerald Röhrling & Thomas Czypionka, 2023. "Exploring the effectiveness of demand-side retail pharmaceutical expenditure reforms," International Journal of Health Economics and Management, Springer, vol. 23(1), pages 149-172, March.
- Romain Duval & Davide Furceri & Jakob Miethe, 2021.
"Robust political economy correlates of major product and labor market reforms in advanced economies: Evidence from BAMLE for logit models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 98-124, January.
- Duval, Romain & Furceri, Davide & Miethe, Jakob, 2020. "Robust political economy correlates of major product and labor market reforms in advanced economies: Evidence from BAMLE for logit models," Munich Reprints in Economics 84714, University of Munich, Department of Economics.
- Ruoyao Shi, 2021. "An Averaging Estimator for Two Step M Estimation in Semiparametric Models," Working Papers 202105, University of California at Riverside, Department of Economics.
- Liao, Jun & Zou, Guohua, 2020. "Corrected Mallows criterion for model averaging," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- Shangwei Zhao & Aman Ullah & Xinyu Zhang, 2018. "A Class of Model Averaging Estimators," Working Paper series 18-11, Rimini Centre for Economic Analysis.
- Valentino Dardanoni & Giuseppe De Luca & Salvatore Modica & Franco Peracchi, 2012.
"A generalized missing-indicator approach to regression with imputed covariates,"
Stata Journal, StataCorp LP, vol. 12(4), pages 575-604, December.
- Valentino Dardanoni & Giuseppe De Luca & Salvatore Modica & Franco Peracchi, 2011. "A Generalized Missing-Indicator Approach to Regression with Imputed Covariates," EIEF Working Papers Series 1111, Einaudi Institute for Economics and Finance (EIEF), revised May 2011.
- Enrique Moral-Benito, 2015. "Model Averaging In Economics: An Overview," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 46-75, February.
More about this item
Keywords
Normal location model; posterior moments and cumulants; higher-order delta method approximations; double-shrinkage estimators; WALS;All these keywords.
JEL classification:
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- I21 - Health, Education, and Welfare - - Education - - - Analysis of Education
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2020-03-16 (Econometrics)
- NEP-ORE-2020-03-16 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20200015. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.