IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20200015.html
   My bibliography  Save this paper

Sampling properties of the Bayesian posterior mean with an application to WALS estimation

Author

Listed:
  • Giuseppe De Luca

    (University of Palermo)

  • Jan R. Magnus

    (Vrije Universiteit Amsterdam)

  • Franco Peracchi

    (Georgetown University)

Abstract

Many statistical and econometric learning methods rely on Bayesian ideas, often applied or reinterpreted in a frequentist setting. Two leading examples are shrinkage estimators and model averaging estimators, such as weighted-average least squares (WALS). In many instances, the accuracy of these learning methods in repeated samples is assessed using the variance of the posterior distribution of the parameters of interest given the data. This may be permissible when the sample size is large because, under the conditions of the Bernstein--von Mises theorem, the posterior variance agrees asymptotically with the frequentist variance. In finite samples, however, things are less clear. In this paper we explore this issue by first considering the frequentist properties (bias and variance) of the posterior mean in the important case of the normal location model, which consists of a single observation on a univariate Gaussian distribution with unknown mean and known variance. Based on these results, we derive new estimators of the frequentist bias and variance of the WALS estimator in finite samples. We then study the finite-sample performance of the proposed estimators by a Monte Carlo experiment with design derived from a real data application about the effect of abortion on crime rates.

Suggested Citation

  • Giuseppe De Luca & Jan R. Magnus & Franco Peracchi, 2020. "Sampling properties of the Bayesian posterior mean with an application to WALS estimation," Tinbergen Institute Discussion Papers 20-015/III, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20200015
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/20015.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    2. Lee, Jaeyong & Oh, Hee-Seok, 2013. "Bayesian regression based on principal components for high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 175-192.
    3. Zhang, Xinyu & Liu, Chu-An, 2019. "Inference After Model Averaging In Linear Regression Models," Econometric Theory, Cambridge University Press, vol. 35(4), pages 816-841, August.
    4. Giuseppe De Luca & Jan R. Magnus & Franco Peracchi, 2021. "Posterior moments and quantiles for the normal location model with Laplace prior," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 50(17), pages 4039-4049, August.
    5. John J. Donohue III & Steven D. Levitt, 2001. "The Impact of Legalized Abortion on Crime," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 116(2), pages 379-420.
    6. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "Inference on Treatment Effects after Selection among High-Dimensional Controlsâ€," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(2), pages 608-650.
    7. Enrique Moral-Benito, 2012. "Determinants of Economic Growth: A Bayesian Panel Data Approach," The Review of Economics and Statistics, MIT Press, vol. 94(2), pages 566-579, May.
    8. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "High-Dimensional Methods and Inference on Structural and Treatment Effects," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 29-50, Spring.
    9. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
    10. Magnus, Jan R. & Wan, Alan T.K. & Zhang, Xinyu, 2011. "Weighted average least squares estimation with nonspherical disturbances and an application to the Hong Kong housing market," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1331-1341, March.
    11. Jan R. Magnus & Giuseppe De Luca, 2016. "Weighted-Average Least Squares (Wals): A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 30(1), pages 117-148, February.
    12. Claeskens,Gerda & Hjort,Nils Lid, 2008. "Model Selection and Model Averaging," Cambridge Books, Cambridge University Press, number 9780521852258, October.
    13. Bradley Efron, 2015. "Frequentist accuracy of Bayesian estimates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(3), pages 617-646, June.
    14. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    15. Christopher L. Foote & Christopher F. Goetz, 2008. "The Impact of Legalized Abortion on Crime: Comment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 123(1), pages 407-423.
    16. Wright, Jonathan H., 2008. "Bayesian Model Averaging and exchange rate forecasts," Journal of Econometrics, Elsevier, vol. 146(2), pages 329-341, October.
    17. Bruce E. Hansen, 2014. "Model averaging, asymptotic risk, and regressor groups," Quantitative Economics, Econometric Society, vol. 5(3), pages 495-530, November.
    18. Dmitry Danilov, 2005. "Estimation of the mean of a univariate normal distribution when the variance is not known," Econometrics Journal, Royal Economic Society, vol. 8(3), pages 277-291, December.
    19. Magnus, Jan R. & Powell, Owen & Prüfer, Patricia, 2010. "A comparison of two model averaging techniques with an application to growth empirics," Journal of Econometrics, Elsevier, vol. 154(2), pages 139-153, February.
    20. De Luca, Giuseppe & Magnus, Jan R. & Peracchi, Franco, 2018. "Weighted-average least squares estimation of generalized linear models," Journal of Econometrics, Elsevier, vol. 204(1), pages 1-17.
    21. Jan R. Magnus & J. Durbin, 1999. "Estimation of Regression Coefficients of Interest When Other Regression Coefficients Are of No Interest," Econometrica, Econometric Society, vol. 67(3), pages 639-644, May.
    22. Xavier Sala-I-Martin & Gernot Doppelhofer & Ronald I. Miller, 2004. "Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach," American Economic Review, American Economic Association, vol. 94(4), pages 813-835, September.
    23. Liang, Hua & Zou, Guohua & Wan, Alan T. K. & Zhang, Xinyu, 2011. "Optimal Weight Choice for Frequentist Model Average Estimators," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1053-1066.
    24. Jan R. Magnus, 2002. "Estimation of the mean of a univariate normal distribution with known variance," Econometrics Journal, Royal Economic Society, vol. 5(1), pages 225-236, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giuseppe Luca & Jan R. Magnus & Franco Peracchi, 2023. "Weighted-Average Least Squares (WALS): Confidence and Prediction Intervals," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1637-1664, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Luca & Jan R. Magnus & Franco Peracchi, 2023. "Weighted-Average Least Squares (WALS): Confidence and Prediction Intervals," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1637-1664, April.
    2. Judith Anne Clarke, 2017. "Model Averaging OLS and 2SLS: An Application of the WALS Procedure," Econometrics Working Papers 1701, Department of Economics, University of Victoria.
    3. Giuseppe De Luca & Jan Magnus & Franco Peracchi, 2022. "Asymptotic properties of the weighted average least squares (WALS) estimator," Tinbergen Institute Discussion Papers 22-022/III, Tinbergen Institute.
    4. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    5. Rockey, James & Temple, Jonathan, 2016. "Growth econometrics for agnostics and true believers," European Economic Review, Elsevier, vol. 81(C), pages 86-102.
    6. De Luca, Giuseppe & Magnus, Jan R. & Peracchi, Franco, 2018. "Weighted-average least squares estimation of generalized linear models," Journal of Econometrics, Elsevier, vol. 204(1), pages 1-17.
    7. Jan R. Magnus & Wendun Wang & Xinyu Zhang, 2016. "Weighted-Average Least Squares Prediction," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1040-1074, June.
    8. Giuseppe De Luca & Jan R. Magnus, 2011. "Bayesian model averaging and weighted-average least squares: Equivariance, stability, and numerical issues," Stata Journal, StataCorp LP, vol. 11(4), pages 518-544, December.
    9. Aedın Doris & Donal O’Neill & Olive Sweetman, 2011. "GMM estimation of the covariance structure of longitudinal data on earnings," Stata Journal, StataCorp LP, vol. 11(3), pages 439-459, September.
    10. Yin-Wong Cheung & Wenhao Wang, 2020. "A Jackknife Model Averaging Analysis of RMB Misalignment Estimates," Journal of International Commerce, Economics and Policy (JICEP), World Scientific Publishing Co. Pte. Ltd., vol. 11(02), pages 1-45, June.
    11. Moral-Benito, Enrique, 2010. "Model averaging in economics," MPRA Paper 26047, University Library of Munich, Germany.
    12. Qingfeng Liu & Ryo Okui & Arihiro Yoshimura, 2016. "Generalized Least Squares Model Averaging," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1692-1752, December.
    13. Berger, Michael & Pock, Markus & Reiss, Miriam & Röhrling, Gerald & Czypionka, Thomas, 2023. "Exploring the effectiveness of demand-side retail pharmaceutical expenditure reforms: cross-country evidence from weighted-average least squares estimation," LSE Research Online Documents on Economics 116928, London School of Economics and Political Science, LSE Library.
    14. Michael Berger & Markus Pock & Miriam Reiss & Gerald Röhrling & Thomas Czypionka, 2023. "Exploring the effectiveness of demand-side retail pharmaceutical expenditure reforms," International Journal of Health Economics and Management, Springer, vol. 23(1), pages 149-172, March.
    15. Romain Duval & Davide Furceri & Jakob Miethe, 2021. "Robust political economy correlates of major product and labor market reforms in advanced economies: Evidence from BAMLE for logit models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 98-124, January.
    16. Ruoyao Shi, 2021. "An Averaging Estimator for Two Step M Estimation in Semiparametric Models," Working Papers 202105, University of California at Riverside, Department of Economics.
    17. Liao, Jun & Zou, Guohua, 2020. "Corrected Mallows criterion for model averaging," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    18. Shangwei Zhao & Aman Ullah & Xinyu Zhang, 2018. "A Class of Model Averaging Estimators," Working Paper series 18-11, Rimini Centre for Economic Analysis.
    19. Valentino Dardanoni & Giuseppe De Luca & Salvatore Modica & Franco Peracchi, 2012. "A generalized missing-indicator approach to regression with imputed covariates," Stata Journal, StataCorp LP, vol. 12(4), pages 575-604, December.
    20. Enrique Moral-Benito, 2015. "Model Averaging In Economics: An Overview," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 46-75, February.

    More about this item

    Keywords

    Normal location model; posterior moments and cumulants; higher-order delta method approximations; double-shrinkage estimators; WALS;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • I21 - Health, Education, and Welfare - - Education - - - Analysis of Education

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20200015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.