IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20210038.html
   My bibliography  Save this paper

Weighted-average least squares (WALS): Confidence and prediction intervals

Author

Listed:
  • Giuseppe De Luca

    (University of Palermo)

  • Jan R. Magnus

    (Vrije Universiteit Amsterdam)

  • Franco Peracchi

    (University of Rome Tor Vergata)

Abstract

We extend the results of De Luca et al. (2021) to inference for linear regression models based on weighted-average least squares (WALS), a frequentist model averaging approach with a Bayesian flavor. We concentrate on inference about a single focus parameter, interpreted as the causal effect of a policy or intervention, in the presence of a potentially large number of auxiliary parameters representing the nuisance component of the model. In our Monte Carlo simulations we compare the performance of WALS with that of several competing estimators, including the unrestricted least-squares estimator (with all auxiliary regressors) and the restricted least-squares estimator (with no auxiliary regressors), two post-selection estimators based on alternative model selection criteria (the Akaike and Bayesian information criteria), various versions of frequentist model averaging estimators (Mallows and jackknife), and one version of a popular shrinkage estimator (the adaptive LASSO). We discuss confidence intervals for the focus parameter and prediction intervals for the outcome of interest, and conclude that the WALS approach leads to superior confidence and prediction intervals, but only if we apply a bias correction.

Suggested Citation

  • Giuseppe De Luca & Jan R. Magnus & Franco Peracchi, 2021. "Weighted-average least squares (WALS): Confidence and prediction intervals," Tinbergen Institute Discussion Papers 21-038/III, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20210038
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/21038.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Panayiotis Theodossiou, 1998. "Financial Data and the Skewed Generalized T Distribution," Management Science, INFORMS, vol. 44(12-Part-1), pages 1650-1661, December.
    2. Valentino Dardanoni & Giuseppe De Luca & Salvatore Modica & Franco Peracchi, 2012. "A generalized missing-indicator approach to regression with imputed covariates," Stata Journal, StataCorp LP, vol. 12(4), pages 575-604, December.
    3. João M. Sousa & Ricardo M. Sousa, 2019. "Asset Returns Under Model Uncertainty: Evidence from the Euro Area, the US and the UK," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 139-176, June.
    4. Zhang, Xinyu & Liu, Chu-An, 2019. "Inference After Model Averaging In Linear Regression Models," Econometric Theory, Cambridge University Press, vol. 35(4), pages 816-841, August.
    5. Giuseppe De Luca & Jan R. Magnus & Franco Peracchi, 2021. "Posterior moments and quantiles for the normal location model with Laplace prior," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 50(17), pages 4039-4049, August.
    6. John J. Donohue III & Steven D. Levitt, 2001. "The Impact of Legalized Abortion on Crime," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 116(2), pages 379-420.
    7. Zhang, Xinyu, 2021. "A New Study On Asymptotic Optimality Of Least Squares Model Averaging," Econometric Theory, Cambridge University Press, vol. 37(2), pages 388-407, April.
    8. Hjort N.L. & Claeskens G., 2003. "Frequentist Model Average Estimators," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 879-899, January.
    9. Andrews, Donald W. K., 1991. "Asymptotic optimality of generalized CL, cross-validation, and generalized cross-validation in regression with heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 47(2-3), pages 359-377, February.
    10. L. Camponovo, 2015. "On the validity of the pairs bootstrap for lasso estimators," Biometrika, Biometrika Trust, vol. 102(4), pages 981-987.
    11. Kabaila, Paul & Mainzer, Rheanna, 2018. "Two sources of poor coverage of confidence intervals after model selection," Statistics & Probability Letters, Elsevier, vol. 140(C), pages 185-190.
    12. DiTraglia, Francis J., 2016. "Using invalid instruments on purpose: Focused moment selection and averaging for GMM," Journal of Econometrics, Elsevier, vol. 195(2), pages 187-208.
    13. Jan R. Magnus & Wendun Wang & Xinyu Zhang, 2016. "Weighted-Average Least Squares Prediction," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1040-1074, June.
    14. Sebastian Ankargren & Shaobo Jin, 2018. "On the least-squares model averaging interval estimator," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(1), pages 118-132, January.
    15. Kabaila, Paul & Leeb, Hannes, 2006. "On the Large-Sample Minimal Coverage Probability of Confidence Intervals After Model Selection," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 619-629, June.
    16. Chatterjee, A. & Lahiri, S. N., 2011. "Bootstrapping Lasso Estimators," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 608-625.
    17. Jan R. Magnus & Giuseppe De Luca, 2016. "Weighted-Average Least Squares (Wals): A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 30(1), pages 117-148, February.
    18. Romain Duval & Davide Furceri & Jakob Miethe, 2021. "Robust political economy correlates of major product and labor market reforms in advanced economies: Evidence from BAMLE for logit models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 98-124, January.
    19. Claeskens,Gerda & Hjort,Nils Lid, 2008. "Model Selection and Model Averaging," Cambridge Books, Cambridge University Press, number 9780521852258, September.
    20. repec:hal:journl:peer-00815561 is not listed on IDEAS
    21. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    22. De Luca, Giuseppe & Magnus, Jan R. & Peracchi, Franco, 2022. "Sampling properties of the Bayesian posterior mean with an application to WALS estimation," Journal of Econometrics, Elsevier, vol. 230(2), pages 299-317.
    23. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    24. Dardanoni, Valentino & Modica, Salvatore & Peracchi, Franco, 2011. "Regression with imputed covariates: A generalized missing-indicator approach," Journal of Econometrics, Elsevier, vol. 162(2), pages 362-368, June.
    25. Hansen, Bruce E., 2005. "Challenges For Econometric Model Selection," Econometric Theory, Cambridge University Press, vol. 21(1), pages 60-68, February.
    26. Bruce E. Hansen, 2014. "Model averaging, asymptotic risk, and regressor groups," Quantitative Economics, Econometric Society, vol. 5(3), pages 495-530, November.
    27. Dmitry Danilov, 2005. "Estimation of the mean of a univariate normal distribution when the variance is not known," Econometrics Journal, Royal Economic Society, vol. 8(3), pages 277-291, December.
    28. Liu, Chu-An, 2015. "Distribution theory of the least squares averaging estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 142-159.
    29. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    30. Magnus, Jan R. & Powell, Owen & Prüfer, Patricia, 2010. "A comparison of two model averaging techniques with an application to growth empirics," Journal of Econometrics, Elsevier, vol. 154(2), pages 139-153, February.
    31. De Luca, Giuseppe & Magnus, Jan R. & Peracchi, Franco, 2018. "Weighted-average least squares estimation of generalized linear models," Journal of Econometrics, Elsevier, vol. 204(1), pages 1-17.
    32. Jan R. Magnus & J. Durbin, 1999. "Estimation of Regression Coefficients of Interest When Other Regression Coefficients Are of No Interest," Econometrica, Econometric Society, vol. 67(3), pages 639-644, May.
    33. Wan, Alan T.K. & Zhang, Xinyu & Zou, Guohua, 2010. "Least squares model averaging by Mallows criterion," Journal of Econometrics, Elsevier, vol. 156(2), pages 277-283, June.
    34. Xavier Sala-I-Martin & Gernot Doppelhofer & Ronald I. Miller, 2004. "Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach," American Economic Review, American Economic Association, vol. 94(4), pages 813-835, September.
    35. Hansen, Bruce E. & Racine, Jeffrey S., 2012. "Jackknife model averaging," Journal of Econometrics, Elsevier, vol. 167(1), pages 38-46.
    36. Bruce E. Hansen, 2007. "Least Squares Model Averaging," Econometrica, Econometric Society, vol. 75(4), pages 1175-1189, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giuseppe De Luca & Jan R. Magnus & Franco Peracchi, 2022. "Asymptotic properties of the weighted-average least squares (WALS) estimator," EIEF Working Papers Series 2203, Einaudi Institute for Economics and Finance (EIEF), revised Mar 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe De Luca & Jan Magnus & Franco Peracchi, 2022. "Asymptotic properties of the weighted average least squares (WALS) estimator," Tinbergen Institute Discussion Papers 22-022/III, Tinbergen Institute.
    2. De Luca, Giuseppe & Magnus, Jan R. & Peracchi, Franco, 2022. "Sampling properties of the Bayesian posterior mean with an application to WALS estimation," Journal of Econometrics, Elsevier, vol. 230(2), pages 299-317.
    3. Kitagawa, Toru & Muris, Chris, 2016. "Model averaging in semiparametric estimation of treatment effects," Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
    4. Liu, Chu-An, 2015. "Distribution theory of the least squares averaging estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 142-159.
    5. Ruoyao Shi, 2021. "An Averaging Estimator for Two Step M Estimation in Semiparametric Models," Working Papers 202105, University of California at Riverside, Department of Economics.
    6. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    7. Liu, Chu-An, 2012. "A plug-in averaging estimator for regressions with heteroskedastic errors," MPRA Paper 41414, University Library of Munich, Germany.
    8. Judith Anne Clarke, 2017. "Model Averaging OLS and 2SLS: An Application of the WALS Procedure," Econometrics Working Papers 1701, Department of Economics, University of Victoria.
    9. Zhang, Xinyu & Liu, Chu-An, 2023. "Model averaging prediction by K-fold cross-validation," Journal of Econometrics, Elsevier, vol. 235(1), pages 280-301.
    10. Liao, Jun & Zou, Guohua, 2020. "Corrected Mallows criterion for model averaging," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    11. De Luca, Giuseppe & Magnus, Jan R. & Peracchi, Franco, 2018. "Weighted-average least squares estimation of generalized linear models," Journal of Econometrics, Elsevier, vol. 204(1), pages 1-17.
    12. Yin-Wong Cheung & Wenhao Wang, 2020. "A Jackknife Model Averaging Analysis of RMB Misalignment Estimates," Journal of International Commerce, Economics and Policy (JICEP), World Scientific Publishing Co. Pte. Ltd., vol. 11(02), pages 1-45, June.
    13. Raffaella Giacomini & Toru Kitagawa & Alessio Volpicella, 2022. "Uncertain identification," Quantitative Economics, Econometric Society, vol. 13(1), pages 95-123, January.
    14. Sun, Yuying & Hong, Yongmiao & Lee, Tae-Hwy & Wang, Shouyang & Zhang, Xinyu, 2021. "Time-varying model averaging," Journal of Econometrics, Elsevier, vol. 222(2), pages 974-992.
    15. Wenchao Xu & Xinyu Zhang, 2024. "On Asymptotic Optimality of Least Squares Model Averaging When True Model Is Included," Papers 2411.09258, arXiv.org.
    16. Qingfeng Liu & Ryo Okui & Arihiro Yoshimura, 2016. "Generalized Least Squares Model Averaging," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1692-1752, December.
    17. Aman Ullah & Huansha Wang, 2013. "Parametric and Nonparametric Frequentist Model Selection and Model Averaging," Econometrics, MDPI, vol. 1(2), pages 1-23, September.
    18. Jan R. Magnus & Wendun Wang & Xinyu Zhang, 2016. "Weighted-Average Least Squares Prediction," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1040-1074, June.
    19. Giuseppe De Luca & Jan R. Magnus, 2011. "Bayesian model averaging and weighted-average least squares: Equivariance, stability, and numerical issues," Stata Journal, StataCorp LP, vol. 11(4), pages 518-544, December.
    20. Toru Kitagawa & Chris Muris, 2013. "Covariate selection and model averaging in semiparametric estimation of treatment effects," CeMMAP working papers 61/13, Institute for Fiscal Studies.

    More about this item

    Keywords

    post-selection estimators; adaptive lasso; frequentist model averaging; WALS; confidence intervals; prediction intervals; Monte Carlo simulations;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20210038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.