IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v47y2018i1p118-132.html
   My bibliography  Save this article

On the least-squares model averaging interval estimator

Author

Listed:
  • Sebastian Ankargren
  • Shaobo Jin

Abstract

In many applications of linear regression models, randomness due to model selection is commonly ignored in post-model selection inference. In order to account for the model selection uncertainty, least-squares frequentist model averaging has been proposed recently. We show that the confidence interval from model averaging is asymptotically equivalent to the confidence interval from the full model. The finite-sample confidence intervals based on approximations to the asymptotic distributions are also equivalent if the parameter of interest is a linear function of the regression coefficients. Furthermore, we demonstrate that this equivalence also holds for prediction intervals constructed in the same fashion.

Suggested Citation

  • Sebastian Ankargren & Shaobo Jin, 2018. "On the least-squares model averaging interval estimator," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(1), pages 118-132, January.
  • Handle: RePEc:taf:lstaxx:v:47:y:2018:i:1:p:118-132
    DOI: 10.1080/03610926.2017.1300272
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2017.1300272
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2017.1300272?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giuseppe Luca & Jan R. Magnus & Franco Peracchi, 2023. "Weighted-Average Least Squares (WALS): Confidence and Prediction Intervals," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1637-1664, April.
    2. Shaobo Jin, 2022. "Frequentist Model Averaging in Structure Equation Model With Ordinal Data," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 1130-1145, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:47:y:2018:i:1:p:118-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.