IDEAS home Printed from
   My bibliography  Save this paper

A Class of Model Averaging Estimators


  • Shangwei Zhao

    (College of Science, Minzu University of China, China)

  • Aman Ullah

    (Department of Economics, University of California, USA; Rimini Centre for Economic Analysis)

  • Xinyu Zhang

    (Academy of Mathematics and Systems Science, Chinese Academy of Sciences, China)


Model averaging aims to a trade-off between efficiency and biases. In this paper, a class of model averaging estimators, g-class, is introduced, and its dominance condition over the ordinary least squares estimator is established. All theoretical findings are verified by simulations.

Suggested Citation

  • Shangwei Zhao & Aman Ullah & Xinyu Zhang, 2018. "A Class of Model Averaging Estimators," Working Paper series 18-11, Rimini Centre for Economic Analysis.
  • Handle: RePEc:rim:rimwps:18-11

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Qingfeng Liu & Ryo Okui, 2013. "Heteroscedasticity‐robust C(p) model averaging," Econometrics Journal, Royal Economic Society, vol. 16(3), pages 463-472, October.
    2. Bruce E. Hansen, 2014. "Model averaging, asymptotic risk, and regressor groups," Quantitative Economics, Econometric Society, vol. 5(3), pages 495-530, November.
    3. repec:taf:jnlasa:v:111:y:2016:i:516:p:1775-1790 is not listed on IDEAS
    4. Zhang, Xinyu & Ullah, Aman & Zhao, Shangwei, 2016. "On the dominance of Mallows model averaging estimator over ordinary least squares estimator," Economics Letters, Elsevier, vol. 142(C), pages 69-73.
    5. Liu, Chu-An, 2015. "Distribution theory of the least squares averaging estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 142-159.
    6. Magnus, Jan R. & Powell, Owen & Prüfer, Patricia, 2010. "A comparison of two model averaging techniques with an application to growth empirics," Journal of Econometrics, Elsevier, vol. 154(2), pages 139-153, February.
    7. Magnus, Jan R. & Wan, Alan T.K. & Zhang, Xinyu, 2011. "Weighted average least squares estimation with nonspherical disturbances and an application to the Hong Kong housing market," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1331-1341, March.
    8. Howard D. Bondell & Brian J. Reich, 2008. "Simultaneous Regression Shrinkage, Variable Selection, and Supervised Clustering of Predictors with OSCAR," Biometrics, The International Biometric Society, vol. 64(1), pages 115-123, March.
    9. Liang, Hua & Zou, Guohua & Wan, Alan T. K. & Zhang, Xinyu, 2011. "Optimal Weight Choice for Frequentist Model Average Estimators," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1053-1066.
    10. Bruce E. Hansen, 2007. "Least Squares Model Averaging," Econometrica, Econometric Society, vol. 75(4), pages 1175-1189, July.
    Full references (including those not matched with items on IDEAS)


    Blog mentions

    As found by, the blog aggregator for Economics research:
    1. Suggested Reading for June
      by Dave Giles in Econometrics Beat: Dave Giles' Blog on 2018-06-01 12:49:00

    More about this item


    finite sample size; mean squared error; model averaging; sufficient condition;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rim:rimwps:18-11. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marco Savioli). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.