IDEAS home Printed from https://ideas.repec.org/a/ier/iecrev/v42y2001i4p1043-50.html
   My bibliography  Save this article

On Optimal Instrumental Variables Estimation of Stationary Time Series Models

Author

Listed:
  • West, Kenneth D

Abstract

In many time series models, an infinite number of moments can be used for estimation in a large sample. I supply a technically undemanding proof of a condition for optimal instrumental variables use of such moments in a parametric model. I also illustrate application of the condition in estimation of a linear model with a disturbance that is serially uncorrelated and conditionally heteroskedastic.

Suggested Citation

  • West, Kenneth D, 2001. "On Optimal Instrumental Variables Estimation of Stationary Time Series Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(4), pages 1043-1050, November.
  • Handle: RePEc:ier:iecrev:v:42:y:2001:i:4:p:1043-50
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Bates, Charles E. & White, Halbert, 1993. "Determination of Estimators with Minimum Asymptotic Covariance Matrices," Econometric Theory, Cambridge University Press, vol. 9(04), pages 633-648, August.
    3. Newey, Whitney K., 1988. "Adaptive estimation of regression models via moment restrictions," Journal of Econometrics, Elsevier, vol. 38(3), pages 301-339, July.
    4. repec:cup:etheor:v:9:y:1993:i:4:p:633-48 is not listed on IDEAS
    5. Kuersteiner, Guido M., 2002. "Efficient Iv Estimation For Autoregressive Models With Conditional Heteroskedasticity," Econometric Theory, Cambridge University Press, vol. 18(03), pages 547-583, June.
    6. Hansen, Lars Peter, 1985. "A method for calculating bounds on the asymptotic covariance matrices of generalized method of moments estimators," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 203-238.
    7. West, Kenneth D & Wilcox, David W, 1996. "A Comparison of Alternative Instrumental Variables Estimators of a Dynamic Linear Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 281-293, July.
    8. West, Kenneth D & Wilcox, David W, 1996. "A Comparison of Alternative Instrumental Variables Estimators of a Dynamic Linear Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 281-293, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carrasco, Marine & Florens, Jean-Pierre, 2014. "On The Asymptotic Efficiency Of Gmm," Econometric Theory, Cambridge University Press, vol. 30(02), pages 372-406, April.
    2. Kenneth West & Ka-fu Wong & Stanislav Anatolyev, 2009. "Instrumental Variables Estimation of Heteroskedastic Linear Models Using All Lags of Instruments," Econometric Reviews, Taylor & Francis Journals, vol. 28(5), pages 441-467.
    3. Stanislav Anatolyev, 2007. "Optimal Instruments In Time Series: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 21(1), pages 143-173, February.
    4. Nour Meddahi, 2002. "ARMA Representation of Two-Factor Models," CIRANO Working Papers 2002s-92, CIRANO.
    5. Nour Meddahi, 2003. "ARMA representation of integrated and realized variances," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 335-356, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ier:iecrev:v:42:y:2001:i:4:p:1043-50. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (). General contact details of provider: http://edirc.repec.org/data/deupaus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.