IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Instrumental Variable Quantile Estimation of Spatial Autoregressive Models

  • Liangjun Su

    (SMU)

  • Zhenlin Yang

We propose an instrumental variable quantile regression (IVQR) estimator for spatial autoregressive (SAR) models. Like the GMM estimators of Lin and Lee (2006) and Kelejian and Prucha (2006), the IVQR estimator is robust against heteroscedasticity. Unlike the GMM estimators, the IVQR estimator is also robust against outliers and requires weaker moment conditions. More importantly, it allows us to characterize the heterogeneous impact of variables on different points (quantiles) of a response distribution. We derive the limiting distribution of the new estimator. Simulation results show that the new estimator performs well in finite samples at various quantile points. In the special case of median restriction, it outperforms the conventional QML estimator without taking into account of heteroscedasticity in the errors; it also outperforms the GMM estimators with or without considering the heteroscedasticity.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://130.56.61.71/node/22476
Download Restriction: no

Paper provided by East Asian Bureau of Economic Research in its series Development Economics Working Papers with number 22476.

as
in new window

Length:
Date of creation: Jan 2007
Date of revision:
Handle: RePEc:eab:develo:22476
Contact details of provider: Postal: JG Crawford Building #13, Asia Pacific School of Economics and Government, Australian National University, ACT 0200
Web page: http://www.eaber.org

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
  2. Koenker, Roger & Zhao, Quanshui, 1996. "Conditional Quantile Estimation and Inference for Arch Models," Econometric Theory, Cambridge University Press, vol. 12(05), pages 793-813, December.
  3. Lung-fei Lee, 2003. "Best Spatial Two-Stage Least Squares Estimators for a Spatial Autoregressive Model with Autoregressive Disturbances," Econometric Reviews, Taylor & Francis Journals, vol. 22(4), pages 307-335.
  4. Alberto Abadie & Joshua Angrist & Guido Imbens, 1999. "Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings," Working papers 99-16, Massachusetts Institute of Technology (MIT), Department of Economics.
  5. Ma, Lingjie & Koenker, Roger, 2006. "Quantile regression methods for recursive structural equation models," Journal of Econometrics, Elsevier, vol. 134(2), pages 471-506, October.
  6. Smirnov, Oleg & Anselin, Luc, 2001. "Fast maximum likelihood estimation of very large spatial autoregressive models: a characteristic polynomial approach," Computational Statistics & Data Analysis, Elsevier, vol. 35(3), pages 301-319, January.
  7. Powell, James L, 1983. "The Asymptotic Normality of Two-Stage Least Absolute Deviations Estimators," Econometrica, Econometric Society, vol. 51(5), pages 1569-75, September.
  8. Lee, Lung-Fei, 2002. "Consistency And Efficiency Of Least Squares Estimation For Mixed Regressive, Spatial Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 18(02), pages 252-277, April.
  9. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
  10. Pinkse, Joris & Slade, Margaret E., 1998. "Contracting in space: An application of spatial statistics to discrete-choice models," Journal of Econometrics, Elsevier, vol. 85(1), pages 125-154, July.
  11. Hansen, Bruce E., 1996. "Stochastic Equicontinuity for Unbounded Dependent Heterogeneous Arrays," Econometric Theory, Cambridge University Press, vol. 12(02), pages 347-359, June.
  12. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
  13. Sakata, Shinichi, 2007. "Instrumental variable estimation based on conditional median restriction," Journal of Econometrics, Elsevier, vol. 141(2), pages 350-382, December.
  14. Pinkse, Joris & Shen, Lihong & Slade, Margaret, 2007. "A central limit theorem for endogenous locations and complex spatial interactions," Journal of Econometrics, Elsevier, vol. 140(1), pages 215-225, September.
  15. Amemiya, Takeshi, 1982. "Two Stage Least Absolute Deviations Estimators," Econometrica, Econometric Society, vol. 50(3), pages 689-711, May.
  16. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-33, May.
  17. Lee, Lung-fei, 2007. "GMM and 2SLS estimation of mixed regressive, spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 137(2), pages 489-514, April.
  18. Han Hong & Elie Tamer, 2003. "Inference in Censored Models with Endogenous Regressors," Econometrica, Econometric Society, vol. 71(3), pages 905-932, 05.
  19. H. Kelejian, Harry & Prucha, Ingmar R., 2001. "On the asymptotic distribution of the Moran I test statistic with applications," Journal of Econometrics, Elsevier, vol. 104(2), pages 219-257, September.
  20. Honore, Bo E & Hu, Luojia, 2004. "On the Performance of Some Robust Instrumental Variables Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 30-39, January.
  21. Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
  22. Joris Pinkse & Margaret Slade & Lihong Shen, 2006. "Dynamic Spatial Discrete Choice Using One-step GMM: An Application to Mine Operating Decisions," Spatial Economic Analysis, Taylor & Francis Journals, vol. 1(1), pages 53-99.
  23. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-57, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eab:develo:22476. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shiro Armstrong)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.