IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

A Spatial Quantile Regression Hedonic Model of Agricultural Land Prices

  • Philip Kostov

Abstract Land price studies typically employ hedonic analysis to identify the impact of land characteristics on price. Owing to the spatial fixity of land, however, the question of possible spatial dependence in agricultural land prices arises. The presence of spatial dependence in agricultural land prices can have serious consequences for the hedonic model analysis. Ignoring spatial autocorrelation can lead to biased estimates in land price hedonic models. We propose using a flexible quantile regression-based estimation of the spatial lag hedonic model allowing for varying effects of the characteristics and, more importantly, varying degrees of spatial autocorrelation. In applying this approach to a sample of agricultural land sales in Northern Ireland we find that the market effectively consists of two relatively separate segments. The larger of these two segments conforms to the conventional hedonic model with no spatial lag dependence, while the smaller, much thinner market segment exhibits considerable spatial lag dependence. Un mod�le h�donique � r�gression quantile spatiale des prix des terrains agricoles R�sum� Les �tudes sur le prix des terrains font g�n�ralement usage d'une analyse h�donique pour identifier l'impact des caract�ristiques des terrains sur le prix. Toutefois, du fait de la fixit� spatiale des terrains, la question d'une �ventuelle d�pendance spatiale sur la valeur des terrains agricoles se pose. L'existence d'une d�pendance spatiale dans le prix des terrains agricoles peut avoir des cons�quences importantes sur l'analyse du mod�le h�donique. En ignorant cette corr�lation s�rielle, on s'expose au risque d'�valuations biais�es des mod�les h�doniques du prix des terrains. Nous proposons l'emploi d'une estimation � base de r�gression flexible du mod�le h�donique � d�calage spatial, tenant compte de diff�rents effets des caract�ristiques, et surtout de diff�rents degr�s de corr�lations s�rielles spatiales. En appliquant ce principe � un �chantillon de ventes de terrains agricoles en Irlande du Nord, nous d�couvrons que le march� se compose de deux segments relativement distincts. Le plus important de ces deux segments est conforme au mod�le h�donique traditionnel, sans d�pendance du d�calage spatial, tandis que le deuxi�me segment du march�, plus petit et beaucoup plus �troit, pr�sente une d�pendance consid�rable du d�calage spatial. Un modelo hed�nico de regresi�n cuantil espacial de los precios del terreno agr�cola Resumen T�picamente, los estudios del precio de la tierra emplean un an�lisis hed�nico para identificar el impacto de las caracter�sticas de la tierra sobre el precio. No obstante, debido a la fijeza espacial de la tierra, surge la cuesti�n de una posible dependencia espacial en los precios del terreno agr�cola. La presencia de dependencia espacial en los precios del terreno agr�cola puede tener consecuencias graves para el modelo de an�lisis hed�nico. Ignorar la autocorrelaci�n espacial puede conducir a estimados parciales en los modelos hed�nicos del precio de la tierra. Proponemos el uso de una valoraci�n basada en una regresi�n cuantil flexible del modelo hed�nico del lapso espacial que tenga en cuenta los diversos efectos de las caracter�sticas y, particularmente, los diversos grados de autocorrelaci�n espacial. Al aplicar este planteamiento a una muestra de ventas de terreno agr�cola en Irlanda del Norte, descubrimos que el mercado consiste efectivamente de dos segmento relativamente separados. El m�s grande de estos dos segmentos se ajusta al modelo hed�nico convencional sin dependencia del lapso espacial, mientras que el segmento m�s peque�o, y mucho m�s fino, muestra una dependencia considerable del lapso espacial.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Taylor & Francis Journals in its journal Spatial Economic Analysis.

Volume (Year): 4 (2009)
Issue (Month): 1 ()
Pages: 53-72

in new window

Handle: RePEc:taf:specan:v:4:y:2009:i:1:p:53-72
Contact details of provider: Web page:

Order Information: Web:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:taf:specan:v:4:y:2009:i:1:p:53-72. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.