IDEAS home Printed from https://ideas.repec.org/p/inn/wpaper/2010-19.html
   My bibliography  Save this paper

Modeling House Prices using Multilevel Structured Additive Regression

Author

Listed:
  • Wolfgang Brunauer

    ()

  • Stefan Lang

    ()

  • Nikolaus Umlauf

    ()

Abstract

This paper analyzes house price data belonging to three hierarchical levels of spatial units. House selling prices with associated individual attributes (the elementary level-1) are grouped within municipalities (level-2), which form districts (level-3), which are themselves nested in counties (level-4). Additionally to individual attributes, explanatory covariates with possibly nonlinear effects are available on two of these spatial resolutions. We apply a multilevel version of structured additive regression (STAR) models to regress house prices on individual attributes and locational neighborhood characteristics in a four level hierarchical model. In multilevel STAR models the regression coefficients of a particular nonlinear term may themselves obey a regression model with structured additive predictor. The framework thus allows to incorporate nonlinear covariate effects and time trends, smooth spatial effects and complex interactions at every level of the hierarchy of the multilevel model. Moreover we are able to decompose the spatial heterogeneity effect and investigate its magnitude at different spatial resolutions allowing for improved predictive quality even in the case of unobserved spatial units. Statistical inference is fully Bayesian and based on highly efficient Markov chain Monte Carlo simulation techniques that take advantage of the hierarchical structure in the data.

Suggested Citation

  • Wolfgang Brunauer & Stefan Lang & Nikolaus Umlauf, 2010. "Modeling House Prices using Multilevel Structured Additive Regression," Working Papers 2010-19, Faculty of Economics and Statistics, University of Innsbruck.
  • Handle: RePEc:inn:wpaper:2010-19
    as

    Download full text from publisher

    File URL: https://www2.uibk.ac.at/downloads/c4041030/wpaper/2010-19.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Fr├╝hwirth-Schnatter, Sylvia & Wagner, Helga, 2010. "Stochastic model specification search for Gaussian and partial non-Gaussian state space models," Journal of Econometrics, Elsevier, vol. 154(1), pages 85-100, January.
    2. Carlos Martins-Filho & Okmyung Bin, 2005. "Estimation of hedonic price functions via additive nonparametric regression," Empirical Economics, Springer, vol. 30(1), pages 93-114, January.
    3. Andrea Leiter & Gerald Pruckner, 2009. "Proportionality of Willingness to Pay to Small Changes in Risk: The Impact of Attitudinal Factors in Scope Tests," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 42(2), pages 169-186, February.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Bayesian hierarchical models; hedonic pricing models; multilevel models; MCMC; P-splines;

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inn:wpaper:2010-19. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Janette Walde). General contact details of provider: http://edirc.repec.org/data/fuibkat.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.