IDEAS home Printed from
   My bibliography  Save this paper

A link based network route choice model with unrestricted choice set



This paper considers the path choice problem, formulating and discussing an econometric random utility model for the choice of path in a network with no restriction on the choice set. Starting from a dynamic specification of link choices we show that it is equivalent to a static model of the multinomial logit form but with infinitely many alternatives. The model can be consistently estimated and used for prediction in a computationally efficient way. Similarly to the path size logit model, we propose an attribute called link size that corrects utilities of overlapping paths but that is link additive. The model is applied to data recording path choices in a network with more than 3,000 nodes and 7,000 links.

Suggested Citation

  • Fosgerau, Mogens & Frejinger, Emma & Karlström, Anders, 2013. "A link based network route choice model with unrestricted choice set," Working papers in Transport Economics 2013:10, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
  • Handle: RePEc:hhs:ctswps:2013_010
    Note: Full bibliographic details: Transportation Research Part B: Methodological, Vol. 56, Oct. 2013, pp 70–80 DOI information: 10.1016/j.trb.2013.07.012

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Rust, John, 1987. "Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher," Econometrica, Econometric Society, vol. 55(5), pages 999-1033, September.
    2. Melo, Emerson, 2012. "A representative consumer theorem for discrete choice models in networked markets," Economics Letters, Elsevier, vol. 117(3), pages 862-865.
    3. Fosgerau, Mogens & McFadden, Daniel & Bierlaire, Michel, 2010. "Choice probability generating functions," MPRA Paper 24214, University Library of Munich, Germany.
    4. Aguirregabiria, Victor & Mira, Pedro, 2010. "Dynamic discrete choice structural models: A survey," Journal of Econometrics, Elsevier, vol. 156(1), pages 38-67, May.
    5. Frejinger, E. & Bierlaire, M. & Ben-Akiva, M., 2009. "Sampling of alternatives for route choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 984-994, December.
    6. Akamatsu, Takashi, 1996. "Cyclic flows, Markov process and stochastic traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 30(5), pages 369-386, October.
    7. David A. Hensher, 2001. "Measurement of the Valuation of Travel Time Savings," Journal of Transport Economics and Policy, University of Bath, vol. 35(1), pages 71-98, January.
    8. Frejinger, E. & Bierlaire, M., 2007. "Capturing correlation with subnetworks in route choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(3), pages 363-378, March.
    9. Fosgerau, Mogens, 2006. "Investigating the distribution of the value of travel time savings," Transportation Research Part B: Methodological, Elsevier, vol. 40(8), pages 688-707, September.
    10. DeSerpa, A C, 1971. "A Theory of the Economics of Time," Economic Journal, Royal Economic Society, vol. 81(324), pages 828-846, December.
    11. Guevara, C. Angelo & Ben-Akiva, Moshe E., 2013. "Sampling of alternatives in Multivariate Extreme Value (MEV) models," Transportation Research Part B: Methodological, Elsevier, vol. 48(C), pages 31-52.
    12. Victor Aguirregabiria & Pedro Mira, 2002. "Swapping the Nested Fixed Point Algorithm: A Class of Estimators for Discrete Markov Decision Models," Econometrica, Econometric Society, vol. 70(4), pages 1519-1543, July.
    13. Flötteröd, Gunnar & Bierlaire, Michel, 2013. "Metropolis–Hastings sampling of paths," Transportation Research Part B: Methodological, Elsevier, vol. 48(C), pages 53-66.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Adriaan Hendrik van der Weijde & Vincent A.C. van den Berg, 2013. "Stochastic User Equilibrium Traffic Assignment with Price-sensitive Demand: Do Methods matter (much)?," Tinbergen Institute Discussion Papers 13-209/VIII, Tinbergen Institute.
    2. Mai, Tien & Fosgerau, Mogens & Frejinger, Emma, 2015. "A nested recursive logit model for route choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 100-112.
    3. Mai, Tien & Frejinger, Emma & Bastin, Fabian, 2015. "A misspecification test for logit based route choice models," Economics of Transportation, Elsevier, vol. 4(4), pages 215-226.
    4. repec:eee:transb:v:107:y:2018:i:c:p:102-123 is not listed on IDEAS
    5. Vinayak Dixit & Laurent Denant-Boemont, 2014. "Is Equilibrium in Transport Pure Nash, Mixed or Stochastic? Evidence from Laboratory Experiments," Post-Print halshs-01103472, HAL.
    6. Mai, Tien & Frejinger, Emma & Fosgerau, Mogens & Bastin, Fabian, 2017. "A dynamic programming approach for quickly estimating large network-based MEV models," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 179-197.
    7. Mai, Tien, 2016. "A method of integrating correlation structures for a generalized recursive route choice model," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 146-161.
    8. Blom Västberg, Oskar & Karlström, Anders & Jonsson, Daniel & Sundberg, Marcus, 2016. "Including time in a travel demand model using dynamic discrete choice," MPRA Paper 75336, University Library of Munich, Germany, revised 11 Nov 2016.
    9. Kazagli, Evanthia & Bierlaire, Michel & Flötteröd, Gunnar, 2016. "Revisiting the route choice problem: A modeling framework based on mental representations," Journal of choice modelling, Elsevier, vol. 19(C), pages 1-23.
    10. Lai, Xinjun & Bierlaire, Michel, 2015. "Specification of the cross-nested logit model with sampling of alternatives for route choice models," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 220-234.
    11. Mogens, Fosgerau, 2016. "A regression model of product differentiation," MPRA Paper 72786, University Library of Munich, Germany.
    12. Xu, Xin-yue & Liu, Jun & Li, Hai-ying & Jiang, Man, 2016. "Capacity-oriented passenger flow control under uncertain demand: Algorithm development and real-world case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 130-148.
    13. Kitthamkesorn, Songyot & Chen, Anthony, 2014. "Unconstrained weibit stochastic user equilibrium model with extensions," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 1-21.
    14. repec:eee:eejocm:v:23:y:2017:i:c:p:21-33 is not listed on IDEAS
    15. repec:eee:transb:v:106:y:2017:i:c:p:447-463 is not listed on IDEAS

    More about this item


    Discrete choice; Recursive logit; Networks; Route choice; Infinite choice set;

    JEL classification:

    • R40 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:ctswps:2013_010. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CTS). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.