IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v80y2015icp220-234.html
   My bibliography  Save this article

Specification of the cross-nested logit model with sampling of alternatives for route choice models

Author

Listed:
  • Lai, Xinjun
  • Bierlaire, Michel

Abstract

We present an operational estimation procedure for the estimation of route choice multivariate extreme value (MEV) models based on sampling of alternatives. The procedure builds on the state-of-the-art literature, and in particular on recent methodological developments proposed by Flötteröd and Bierlaire (2013) and Guevara and Ben-Akiva (2013b). Case studies on both synthetic data and a real network demonstrate that the new method is valid and practical.

Suggested Citation

  • Lai, Xinjun & Bierlaire, Michel, 2015. "Specification of the cross-nested logit model with sampling of alternatives for route choice models," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 220-234.
  • Handle: RePEc:eee:transb:v:80:y:2015:i:c:p:220-234
    DOI: 10.1016/j.trb.2015.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261515001526
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2015.07.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frejinger, E. & Bierlaire, M., 2007. "Capturing correlation with subnetworks in route choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(3), pages 363-378, March.
    2. Fosgerau, Mogens & Frejinger, Emma & Karlstrom, Anders, 2013. "A link based network route choice model with unrestricted choice set," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 70-80.
    3. Fosgerau, Mogens & McFadden, Daniel & Bierlaire, Michel, 2010. "Choice probability generating functions," MPRA Paper 24214, University Library of Munich, Germany.
    4. Frejinger, E. & Bierlaire, M. & Ben-Akiva, M., 2009. "Sampling of alternatives for route choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 984-994, December.
    5. Bierlaire, M. & Bolduc, D. & McFadden, D., 2008. "The estimation of generalized extreme value models from choice-based samples," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 381-394, May.
    6. Wen, Chieh-Hua & Koppelman, Frank S., 2001. "The generalized nested logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 627-641, August.
    7. Guevara, C. Angelo & Ben-Akiva, Moshe E., 2013. "Sampling of alternatives in Logit Mixture models," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 185-198.
    8. Guevara, C. Angelo & Ben-Akiva, Moshe E., 2013. "Sampling of alternatives in Multivariate Extreme Value (MEV) models," Transportation Research Part B: Methodological, Elsevier, vol. 48(C), pages 31-52.
    9. George R. Parsons & Mary Jo Kealy, 1992. "Randomly Drawn Opportunity Sets in a Random Utility Model of Lake Recreation," Land Economics, University of Wisconsin Press, vol. 68(1), pages 93-106.
    10. Michel Bierlaire, 2006. "A theoretical analysis of the cross-nested logit model," Annals of Operations Research, Springer, vol. 144(1), pages 287-300, April.
    11. Flötteröd, Gunnar & Bierlaire, Michel, 2013. "Metropolis–Hastings sampling of paths," Transportation Research Part B: Methodological, Elsevier, vol. 48(C), pages 53-66.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao, Rui & Bekhor, Shlomo, 2022. "A variational autoencoder approach for choice set generation and implicit perception of alternatives in choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 273-294.
    2. Mai, Tien & Frejinger, Emma & Fosgerau, Mogens & Bastin, Fabian, 2017. "A dynamic programming approach for quickly estimating large network-based MEV models," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 179-197.
    3. Mai, Tien & Bastin, Fabian & Frejinger, Emma, 2017. "On the similarities between random regret minimization and mother logit: The case of recursive route choice models," Journal of choice modelling, Elsevier, vol. 23(C), pages 21-33.
    4. Evanthia Kazagli & Michel Bierlaire & Matthieu de Lapparent, 2020. "Operational route choice methodologies for practical applications," Transportation, Springer, vol. 47(1), pages 43-74, February.
    5. Ding-Mastera, Jing & Gao, Song & Jenelius, Erik & Rahmani, Mahmood & Ben-Akiva, Moshe, 2019. "A latent-class adaptive routing choice model in stochastic time-dependent networks," Transportation Research Part B: Methodological, Elsevier, vol. 124(C), pages 1-17.
    6. Kazagli, Evanthia & Bierlaire, Michel & Flötteröd, Gunnar, 2016. "Revisiting the route choice problem: A modeling framework based on mental representations," Journal of choice modelling, Elsevier, vol. 19(C), pages 1-23.
    7. Mai, Tien & Yu, Xinlian & Gao, Song & Frejinger, Emma, 2021. "Routing policy choice prediction in a stochastic network: Recursive model and solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 151(C), pages 42-58.
    8. Hamzeh Alizadeh & Bilal Farooq & Catherine Morency & Nicolas Saunier, 2018. "On the role of bridges as anchor points in route choice modeling," Transportation, Springer, vol. 45(5), pages 1181-1206, September.
    9. Tien Mai & Fabian Bastin & Emma Frejinger, 2018. "A decomposition method for estimating recursive logit based route choice models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 253-275, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Rui & Bekhor, Shlomo, 2022. "A variational autoencoder approach for choice set generation and implicit perception of alternatives in choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 273-294.
    2. Kazagli, Evanthia & Bierlaire, Michel & Flötteröd, Gunnar, 2016. "Revisiting the route choice problem: A modeling framework based on mental representations," Journal of choice modelling, Elsevier, vol. 19(C), pages 1-23.
    3. Fosgerau, Mogens & Frejinger, Emma & Karlstrom, Anders, 2013. "A link based network route choice model with unrestricted choice set," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 70-80.
    4. Mai, Tien & Fosgerau, Mogens & Frejinger, Emma, 2015. "A nested recursive logit model for route choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 100-112.
    5. Hamzeh Alizadeh & Bilal Farooq & Catherine Morency & Nicolas Saunier, 2018. "On the role of bridges as anchor points in route choice modeling," Transportation, Springer, vol. 45(5), pages 1181-1206, September.
    6. Crawford, Gregory S. & Griffith, Rachel & Iaria, Alessandro, 2021. "A survey of preference estimation with unobserved choice set heterogeneity," Journal of Econometrics, Elsevier, vol. 222(1), pages 4-43.
    7. Blom Västberg, Oskar & Karlström, Anders & Jonsson, Daniel & Sundberg, Marcus, 2016. "Including time in a travel demand model using dynamic discrete choice," MPRA Paper 75336, University Library of Munich, Germany, revised 11 Nov 2016.
    8. Pereira, Pedro & Ribeiro, Tiago & Vareda, João, 2013. "Delineating markets for bundles with consumer level data: The case of triple-play," International Journal of Industrial Organization, Elsevier, vol. 31(6), pages 760-773.
    9. Mohammad Nurul Hassan & Taha Hossein Rashidi & Neema Nassir, 2021. "Consideration of different travel strategies and choice set sizes in transit path choice modelling," Transportation, Springer, vol. 48(2), pages 723-746, April.
    10. Guevara, C. Angelo & Ben-Akiva, Moshe E., 2013. "Sampling of alternatives in Multivariate Extreme Value (MEV) models," Transportation Research Part B: Methodological, Elsevier, vol. 48(C), pages 31-52.
    11. Mai, Tien & Frejinger, Emma & Bastin, Fabian, 2015. "A misspecification test for logit based route choice models," Economics of Transportation, Elsevier, vol. 4(4), pages 215-226.
    12. Melstrom, Richard T., 2017. "The petroleum industry's response to an endangered species listing," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258281, Agricultural and Applied Economics Association.
    13. Melstrom, Richard T., 2017. "Where to drill? The petroleum industry's response to an endangered species listing," Energy Economics, Elsevier, vol. 66(C), pages 320-327.
    14. Evanthia Kazagli & Michel Bierlaire & Matthieu de Lapparent, 2020. "Operational route choice methodologies for practical applications," Transportation, Springer, vol. 47(1), pages 43-74, February.
    15. Mai, Tien & Yu, Xinlian & Gao, Song & Frejinger, Emma, 2021. "Routing policy choice prediction in a stochastic network: Recursive model and solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 151(C), pages 42-58.
    16. Newman, Jeffrey P. & Ferguson, Mark E. & Garrow, Laurie A., 2013. "Estimating GEV models with censored data," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 170-184.
    17. Tien Mai & Fabian Bastin & Emma Frejinger, 2018. "A decomposition method for estimating recursive logit based route choice models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 253-275, September.
    18. Jun Li & Xinjun Lai, 2019. "Modelling travellers’ route choice behaviours with the concept of equivalent impedance," Transportation, Springer, vol. 46(1), pages 233-262, February.
    19. Lemp, Jason D. & Kockelman, Kara M., 2012. "Strategic sampling for large choice sets in estimation and application," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 602-613.
    20. Dieter, Peter & Caron, Matthew & Schryen, Guido, 2023. "Integrating driver behavior into last-mile delivery routing: Combining machine learning and optimization in a hybrid decision support framework," European Journal of Operational Research, Elsevier, vol. 311(1), pages 283-300.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:80:y:2015:i:c:p:220-234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.