IDEAS home Printed from https://ideas.repec.org/r/hhs/ctswps/2013_010.html
   My bibliography  Save this item

A link based network route choice model with unrestricted choice set

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Evanthia Kazagli & Michel Bierlaire & Matthieu de Lapparent, 2020. "Operational route choice methodologies for practical applications," Transportation, Springer, vol. 47(1), pages 43-74, February.
  2. Kai Shen & Jan-Dirk Schmöcker & Wenzhe Sun & Ali Gul Qureshi, 2023. "Calibration of sightseeing tour choices considering multiple decision criteria with diminishing reward," Transportation, Springer, vol. 50(5), pages 1897-1921, October.
  3. Marra, Alessio Daniele & Corman, Francesco, 2020. "Determining an efficient and precise choice set for public transport based on tracking data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 168-186.
  4. Xu, Xiangdong & Chen, Anthony & Jansuwan, Sarawut & Yang, Chao & Ryu, Seungkyu, 2018. "Transportation network redundancy: Complementary measures and computational methods," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 68-85.
  5. Oyama, Yuki & Hato, Eiji, 2019. "Prism-based path set restriction for solving Markovian traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 528-546.
  6. Kucharski, Rafał & Gentile, Guido, 2019. "Simulation of rerouting phenomena in Dynamic Traffic Assignment with the Information Comply Model," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 414-441.
  7. Mai, Tien & Bui, The Viet & Nguyen, Quoc Phong & Le, Tho V., 2023. "Estimation of recursive route choice models with incomplete trip observations," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 313-331.
  8. Liu, Shan & Jiang, Hai, 2022. "Personalized route recommendation for ride-hailing with deep inverse reinforcement learning and real-time traffic conditions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
  9. Yao, Rui & Bekhor, Shlomo, 2022. "A variational autoencoder approach for choice set generation and implicit perception of alternatives in choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 273-294.
  10. Ken Hidaka & Toshiyuki Yamamoto, 2021. "Activity Scheduling Behavior of the Visitors to an Outdoor Recreational Facility Using GPS Data," Sustainability, MDPI, vol. 13(9), pages 1-22, April.
  11. Adriaan Hendrik van der Weijde & Vincent A.C. van den Berg, 2013. "Stochastic User Equilibrium Traffic Assignment with Price-sensitive Demand: Do Methods matter (much)?," Tinbergen Institute Discussion Papers 13-209/VIII, Tinbergen Institute.
  12. Mai, Tien & Fosgerau, Mogens & Frejinger, Emma, 2015. "A nested recursive logit model for route choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 100-112.
  13. Wong, Melvin & Farooq, Bilal & Bilodeau, Guillaume-Alexandre, 2016. "Next Direction Route Choice Model for Cyclist Using Panel Data," 57th Transportation Research Forum (51st CTRF) Joint Conference, Toronto, Ontario, May 1-4, 2016 319265, Transportation Research Forum.
  14. Susan Jia Xu & Mehdi Nourinejad & Xuebo Lai & Joseph Y. J. Chow, 2018. "Network Learning via Multiagent Inverse Transportation Problems," Service Science, INFORMS, vol. 52(6), pages 1347-1364, December.
  15. Oyama, Yuki & Hara, Yusuke & Akamatsu, Takashi, 2022. "Markovian traffic equilibrium assignment based on network generalized extreme value model," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 135-159.
  16. Mai, Tien & Frejinger, Emma & Bastin, Fabian, 2015. "A misspecification test for logit based route choice models," Economics of Transportation, Elsevier, vol. 4(4), pages 215-226.
  17. Zhou, Bo & Liu, Ronghui, 2024. "A generalized rationally inattentive route choice model with non-uniform marginal information costs," Transportation Research Part B: Methodological, Elsevier, vol. 189(C).
  18. Oskar Blom Västberg & Anders Karlström & Daniel Jonsson & Marcus Sundberg, 2020. "A Dynamic Discrete Choice Activity-Based Travel Demand Model," Transportation Science, INFORMS, vol. 54(1), pages 21-41, January.
  19. Li, Qing & Liao, Feixiong & Timmermans, Harry J.P. & Huang, Haijun & Zhou, Jing, 2018. "Incorporating free-floating car-sharing into an activity-based dynamic user equilibrium model: A demand-side model," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 102-123.
  20. Papola, Andrea & Tinessa, Fiore & Marzano, Vittorio, 2018. "Application of the Combination of Random Utility Models (CoRUM) to route choice," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 304-326.
  21. Nassir, Neema & Hickman, Mark & Ma, Zhen-Liang, 2019. "A strategy-based recursive path choice model for public transit smart card data," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 528-548.
  22. Dieter, Peter & Caron, Matthew & Schryen, Guido, 2023. "Integrating driver behavior into last-mile delivery routing: Combining machine learning and optimization in a hybrid decision support framework," European Journal of Operational Research, Elsevier, vol. 311(1), pages 283-300.
  23. Vinayak V Dixit & Laurent Denant-Boemont, 2014. "Is Equilibrium in Transport Pure Nash, Mixed or Stochastic? Evidence from Laboratory Experiments," Post-Print halshs-01103472, HAL.
  24. Ding-Mastera, Jing & Gao, Song & Jenelius, Erik & Rahmani, Mahmood & Ben-Akiva, Moshe, 2019. "A latent-class adaptive routing choice model in stochastic time-dependent networks," Transportation Research Part B: Methodological, Elsevier, vol. 124(C), pages 1-17.
  25. Austin Knies & Jorge Lorca & Emerson Melo, 2020. "A Recursive Logit Model with Choice Aversion and Its Application to Transportation Networks," Papers 2010.02398, arXiv.org, revised Oct 2021.
  26. C. Angelo Guevara & Caspar G. Chorus & Moshe E. Ben-Akiva, 2016. "Sampling of Alternatives in Random Regret Minimization Models," Transportation Science, INFORMS, vol. 50(1), pages 306-321, February.
  27. Tien Mai & The Viet Bui & Quoc Phong Nguyen & Tho V. Le, 2022. "Estimation of Recursive Route Choice Models with Incomplete Trip Observations," Papers 2204.12992, arXiv.org.
  28. Dong, Han & Cirillo, Cinzia, 2020. "Space-time dynamics: A modeling approach for commuting departure time on linked datasets," Journal of Transport Geography, Elsevier, vol. 82(C).
  29. Jun Li & Xinjun Lai, 2019. "Modelling travellers’ route choice behaviours with the concept of equivalent impedance," Transportation, Springer, vol. 46(1), pages 233-262, February.
  30. Maëlle Zimmermann & Emma Frejinger & Patrice Marcotte, 2021. "A Strategic Markovian Traffic Equilibrium Model for Capacitated Networks," Transportation Science, INFORMS, vol. 55(3), pages 574-591, May.
  31. Yuki Oyama, 2023. "Global path preference and local response: A reward decomposition approach for network path choice analysis in the presence of locally perceived attributes," Papers 2307.08646, arXiv.org.
  32. Oka, Hideki & Hagino, Yasukatsu & Kenmochi, Takeshi & Tani, Ryota & Nishi, Ryuta & Endo, Kotaro & Fukuda, Daisuke, 2019. "Predicting travel pattern changes of freight trucks in the Tokyo Metropolitan area based on the latest large-scale urban freight survey and route choice modeling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 305-324.
  33. Meyer de Freitas, Lucas & Becker, Henrik & Zimmermann, Maëlle & Axhausen, Kay W., 2019. "Modelling intermodal travel in Switzerland: A recursive logit approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 200-213.
  34. Wenhao Li & Chengkun Liu & Tao Wang & Yanjie Ji, 2024. "An innovative supervised learning structure for trajectory reconstruction of sparse LPR data," Transportation, Springer, vol. 51(1), pages 73-97, February.
  35. Selin Damla Ahipaşaoğlu & Uğur Arıkan & Karthik Natarajan, 2019. "Distributionally Robust Markovian Traffic Equilibrium," Transportation Science, INFORMS, vol. 53(6), pages 1546-1562, November.
  36. Mai, Tien & Frejinger, Emma & Fosgerau, Mogens & Bastin, Fabian, 2017. "A dynamic programming approach for quickly estimating large network-based MEV models," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 179-197.
  37. Liu, Shan & Jiang, Hai & Chen, Shuiping & Ye, Jing & He, Renqing & Sun, Zhizhao, 2020. "Integrating Dijkstra’s algorithm into deep inverse reinforcement learning for food delivery route planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
  38. Yadan Yan & Tianzhao Guo & Dongwei Wang, 2021. "Dynamic Accessibility Analysis of Urban Road-to-Freeway Interchanges Based on Navigation Map Paths," Sustainability, MDPI, vol. 13(1), pages 1-17, January.
  39. Song, Yuchen & Li, Dawei & Liu, Dongjie & Cao, Qi & Chen, Junlan & Ren, Gang & Tang, Xiaoyong, 2022. "Modeling activity-travel behavior under a dynamic discrete choice framework with unobserved heterogeneity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
  40. Saxena, N. & Rashidi, T.H. & Dixit, V.V. & Waller, S.T., 2019. "Modelling the route choice behaviour under stop-&-go traffic for different car driver segments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 62-72.
  41. Longsheng Sun & Mark H. Karwan & Changhyun Kwon, 2018. "Generalized Bounded Rationality and Robust Multicommodity Network Design," Operations Research, INFORMS, vol. 66(1), pages 42-57, 1-2.
  42. Mai, Tien, 2016. "A method of integrating correlation structures for a generalized recursive route choice model," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 146-161.
  43. Blom Västberg, Oskar & Karlström, Anders & Jonsson, Daniel & Sundberg, Marcus, 2016. "Including time in a travel demand model using dynamic discrete choice," MPRA Paper 75336, University Library of Munich, Germany, revised 11 Nov 2016.
  44. Nicholas Molyneaux & Riccardo Scarinci & Michel Bierlaire, 2021. "Design and analysis of control strategies for pedestrian flows," Transportation, Springer, vol. 48(4), pages 1767-1807, August.
  45. Li, Dawei & Feng, Siqi & Song, Yuchen & Lai, Xinjun & Bekhor, Shlomo, 2023. "Asymmetric closed-form route choice models: Formulations and comparative applications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
  46. Kazagli, Evanthia & Bierlaire, Michel & Flötteröd, Gunnar, 2016. "Revisiting the route choice problem: A modeling framework based on mental representations," Journal of choice modelling, Elsevier, vol. 19(C), pages 1-23.
  47. Mai, Tien & Yu, Xinlian & Gao, Song & Frejinger, Emma, 2021. "Routing policy choice prediction in a stochastic network: Recursive model and solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 151(C), pages 42-58.
  48. Hewitt, Mike & Frejinger, Emma, 2020. "Data-driven optimization model customization," European Journal of Operational Research, Elsevier, vol. 287(2), pages 438-451.
  49. Lai, Xinjun & Bierlaire, Michel, 2015. "Specification of the cross-nested logit model with sampling of alternatives for route choice models," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 220-234.
  50. Cortés, Cristián E. & Donoso, Pedro & Gutiérrez, Leonel & Herl, Daniel & Muñoz, Diego, 2023. "A recursive stochastic transit equilibrium model estimated using passive data from Santiago, Chile," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
  51. Tran, Hung & Mai, Tien, 2024. "Network-based representations and dynamic discrete choice models for multiple discrete choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 184(C).
  52. Zhang, Pujun & Lei, Dazhou & Liu, Shan & Jiang, Hai, 2024. "Recursive logit-based meta-inverse reinforcement learning for driver-preferred route planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
  53. Nicholas Molyneaux & Riccardo Scarinci & Michel Bierlaire, 0. "Design and analysis of control strategies for pedestrian flows," Transportation, Springer, vol. 0, pages 1-41.
  54. Liu, Yan & Cirillo, Cinzia, 2018. "A generalized dynamic discrete choice model for green vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 288-302.
  55. Yuhan Gao & Jan-Dirk Schmöcker, 2021. "Modelling sequential ticket booking choices during Chinese New Year," Transportation, Springer, vol. 48(4), pages 1987-2010, August.
  56. Mogens, Fosgerau, 2016. "A regression model of product differentiation," MPRA Paper 72786, University Library of Munich, Germany.
  57. Gardner, Clara Brimnes & Nielsen, Sara Dorthea & Eltved, Morten & Rasmussen, Thomas Kjær & Nielsen, Otto Anker & Nielsen, Bo Friis, 2021. "Calculating conditional passenger travel time distributions in mixed schedule- and frequency-based public transport networks using Markov chains," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 1-17.
  58. Xu, Xin-yue & Liu, Jun & Li, Hai-ying & Jiang, Man, 2016. "Capacity-oriented passenger flow control under uncertain demand: Algorithm development and real-world case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 130-148.
  59. Siti Raudhatul Fadilah & Hiroaki Nishiuchi & An Minh Ngoc, 2022. "The Impact of Traffic Information Provision and Prevailing Policy on the Route Choice Behavior of Motorcycles Based on the Stated Preference Experiment: A Preliminary Study," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
  60. Jiang, Gege & Fosgerau, Mogens & Lo, Hong K., 2020. "Route choice, travel time variability, and rational inattention," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 188-207.
  61. van Oijen, Tim P. & Daamen, Winnie & Hoogendoorn, Serge P., 2020. "Estimation of a recursive link-based logit model and link flows in a sensor equipped network," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 262-281.
  62. Mogens Fosgerau & Nikolaj Nielsen & Mads Paulsen & Thomas Kj{ae}r Rasmussen & Rui Yao, 2024. "Sensitivity analysis of the perturbed utility stochastic traffic equilibrium," Papers 2409.08347, arXiv.org, revised May 2025.
  63. Mogens Fosgerau & Mads Paulsen & Thomas Kj{ae}r Rasmussen, 2021. "A perturbed utility route choice model," Papers 2103.13784, arXiv.org, revised Sep 2021.
  64. Oyama, Yuki, 2024. "Global path preference and local response: A reward decomposition approach for network path choice analysis in the presence of visually perceived attributes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
  65. Yuki Oyama, 2022. "Capturing positive network attributes during the estimation of recursive logit models: A prism-based approach," Papers 2204.01215, arXiv.org, revised Jan 2023.
  66. Hamzeh Alizadeh & Bilal Farooq & Catherine Morency & Nicolas Saunier, 2018. "On the role of bridges as anchor points in route choice modeling," Transportation, Springer, vol. 45(5), pages 1181-1206, September.
  67. Kitthamkesorn, Songyot & Chen, Anthony, 2014. "Unconstrained weibit stochastic user equilibrium model with extensions," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 1-21.
  68. Nur Diana Safitri & Makoto Chikaraishi, 2023. "Monitoring the elasticity of travel demand with respect to changes in the transport network for better policy decisions during disasters," PLOS ONE, Public Library of Science, vol. 18(7), pages 1-18, July.
  69. Hung Tran & Tien Mai, 2023. "Network-based Representations and Dynamic Discrete Choice Models for Multiple Discrete Choice Analysis," Papers 2306.04606, arXiv.org.
  70. Knies, Austin & Lorca, Jorge & Melo, Emerson, 2022. "A recursive logit model with choice aversion and its application to transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 47-71.
  71. Mai, Tien & Bastin, Fabian & Frejinger, Emma, 2017. "On the similarities between random regret minimization and mother logit: The case of recursive route choice models," Journal of choice modelling, Elsevier, vol. 23(C), pages 21-33.
  72. Jorge Lorca & Emerson Melo, 2020. "Choice Aversion in Directed Networks," Working Papers Central Bank of Chile 879, Central Bank of Chile.
  73. Tien Mai & Fabian Bastin & Emma Frejinger, 2018. "A decomposition method for estimating recursive logit based route choice models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 253-275, September.
  74. Urena Serulle, Nayel & Cirillo, Cinzia, 2017. "The optimal time to evacuate: A behavioral dynamic model on Louisiana resident data," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 447-463.
  75. Mohammad Nurul Hassan & Taha Hossein Rashidi & Neema Nassir, 2021. "Consideration of different travel strategies and choice set sizes in transit path choice modelling," Transportation, Springer, vol. 48(2), pages 723-746, April.
  76. Roohnavazfar, Mina & Manerba, Daniele & De Martin, Juan Carlos & Tadei, Roberto, 2019. "Optimal paths in multi-stage stochastic decision networks," Operations Research Perspectives, Elsevier, vol. 6(C).
  77. Leong, Joseph & Nassir, Neema & Mohri, Seyed Sina & Sarvi, Majid, 2024. "A dynamic discrete choice modelling approach for forward-looking travel mode choices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 190(C).
  78. Hänseler, Flurin S. & van den Heuvel, Jeroen P.A. & Cats, Oded & Daamen, Winnie & Hoogendoorn, Serge P., 2020. "A passenger-pedestrian model to assess platform and train usage from automated data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 948-968.
  79. Guan, Xiangyang & Chen, Cynthia, 2021. "A behaviorally-integrated individual-level state-transition model that can predict rapid changes in evacuation demand days earlier," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.