IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v106y2017icp447-463.html
   My bibliography  Save this article

The optimal time to evacuate: A behavioral dynamic model on Louisiana resident data

Author

Listed:
  • Urena Serulle, Nayel
  • Cirillo, Cinzia

Abstract

Understanding what affects the decision process leading to evacuation of a population at risk from the threat of a disaster is of upmost importance to successfully implement emergency planning policies. Literature on this is broad; however, the vast majority of behavioral models is limited to conventional structures, such as aggregate participation rate models or disaggregate multinomial logit models. This research introduces a dynamic discrete choice model that takes into account the threat's characteristics and the population's expectation of them. The proposed framework is estimated using Stated Preference (SP) evacuation data collected from Louisiana residents. The results indicate that the proposed dynamic discrete choice model outperforms sequential logit, excels in incorporating demographic information of respondents, a key input in policy evaluation, and yields significantly more accurate predictions of the decision and timing to evacuate.

Suggested Citation

  • Urena Serulle, Nayel & Cirillo, Cinzia, 2017. "The optimal time to evacuate: A behavioral dynamic model on Louisiana resident data," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 447-463.
  • Handle: RePEc:eee:transb:v:106:y:2017:i:c:p:447-463
    DOI: 10.1016/j.trb.2017.06.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261515302253
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2017.06.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rust, John, 1987. "Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher," Econometrica, Econometric Society, vol. 55(5), pages 999-1033, September.
    2. Xie, Chi & Lin, Dung-Ying & Travis Waller, S., 2010. "A dynamic evacuation network optimization problem with lane reversal and crossing elimination strategies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(3), pages 295-316, May.
    3. Yi, Wenqi & Nozick, Linda & Davidson, Rachel & Blanton, Brian & Colle, Brian, 2017. "Optimization of the issuance of evacuation orders under evolving hurricane conditions," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 285-304.
    4. Heckman, James J. & Navarro, Salvador, 2007. "Dynamic discrete choice and dynamic treatment effects," Journal of Econometrics, Elsevier, vol. 136(2), pages 341-396, February.
    5. Aguirregabiria, Victor & Mira, Pedro, 2010. "Dynamic discrete choice structural models: A survey," Journal of Econometrics, Elsevier, vol. 156(1), pages 38-67, May.
    6. John Rust & Christopher Phelan, 1997. "How Social Security and Medicare Affect Retirement Behavior in a World of Incomplete Markets," Econometrica, Econometric Society, vol. 65(4), pages 781-832, July.
    7. Miller, Robert A, 1984. "Job Matching and Occupational Choice," Journal of Political Economy, University of Chicago Press, vol. 92(6), pages 1086-1120, December.
    8. Michael P. Keane & Kenneth I. Wolpin, 2009. "Empirical Applications of Discrete Choice Dynamic Programming Models," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 12(1), pages 1-22, January.
    9. Oleg Melnikov, 2013. "Demand For Differentiated Durable Products: The Case Of The U.S. Computer Printer Market," Economic Inquiry, Western Economic Association International, vol. 51(2), pages 1277-1298, April.
    10. Keane, Michael P & Wolpin, Kenneth I, 1997. "The Career Decisions of Young Men," Journal of Political Economy, University of Chicago Press, vol. 105(3), pages 473-522, June.
    11. Xu, Kecheng & Davidson, Rachel A. & Nozick, Linda K. & Wachtendorf, Tricia & DeYoung, Sarah E., 2016. "Hurricane evacuation demand models with a focus on use for prediction in future events," Transportation Research Part A: Policy and Practice, Elsevier, vol. 87(C), pages 90-101.
    12. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, January.
    13. Cinzia Cirillo & Renting Xu & Fabian Bastin, 2016. "A Dynamic Formulation for Car Ownership Modeling," Transportation Science, INFORMS, vol. 50(1), pages 322-335, February.
    14. Michael P. Keane & Kenneth I. Wolpin, 2002. "Estimating Welfare Effects Consistent with Forward-Looking Behavior. Part II: Empirical Results," Journal of Human Resources, University of Wisconsin Press, vol. 37(3), pages 600-622.
    15. Ge, Suqin, 2013. "Estimating the returns to schooling: Implications from a dynamic discrete choice model," Labour Economics, Elsevier, vol. 20(C), pages 92-105.
    16. Michael P. Keane & Kenneth I. Wolpin, 2002. "Estimating Welfare Effects Consistent with Forward-Looking Behavior. Part I: Lessons from a Simulation Exercise," Journal of Human Resources, University of Wisconsin Press, vol. 37(3), pages 570-599.
    17. de Lapparent, Matthieu & Cernicchiaro, Giulia, 2012. "How long to own and how much to use a car? A dynamic discrete choice model to explain holding duration and driven mileage," Economic Modelling, Elsevier, vol. 29(5), pages 1737-1744.
    18. Pakes, Ariel S, 1986. "Patents as Options: Some Estimates of the Value of Holding European Patent Stocks," Econometrica, Econometric Society, vol. 54(4), pages 755-784, July.
    19. Anders Karlstrom & Marten Palme & Ingemar Svensson, 2004. "A dynamic programming approach to model the retirement behaviour of blue-collar workers in Sweden," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(6), pages 795-807.
    20. Fosgerau, Mogens & Frejinger, Emma & Karlstrom, Anders, 2013. "A link based network route choice model with unrestricted choice set," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 70-80.
    21. Wolpin, Kenneth I, 1984. "An Estimable Dynamic Stochastic Model of Fertility and Child Mortality," Journal of Political Economy, University of Chicago Press, vol. 92(5), pages 852-874, October.
    22. Gurmu, Shiferaw & Ihlanfeldt, Keith R. & Smith, William J., 2008. "Does residential location matter to the employment of TANF recipients Evidence from a dynamic discrete choice model with unobserved effects," Journal of Urban Economics, Elsevier, vol. 63(1), pages 325-351, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anyidoho, Prosper K. & Davidson, Rachel A. & Rambha, Tarun & Nozick, Linda K., 2022. "Prediction of population behavior in hurricane evacuations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 200-221.
    2. Song, Yuchen & Li, Dawei & Liu, Dongjie & Cao, Qi & Chen, Junlan & Ren, Gang & Tang, Xiaoyong, 2022. "Modeling activity-travel behavior under a dynamic discrete choice framework with unobserved heterogeneity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    3. Guan, Xiangyang & Chen, Cynthia, 2021. "A behaviorally-integrated individual-level state-transition model that can predict rapid changes in evacuation demand days earlier," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    4. Wu, Wen-Xiang & Huang, Hai-Jun, 2019. "A combined, adaptive strategy for managing evacuation routes," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 182-198.
    5. Rambha, Tarun & Nozick, Linda K. & Davidson, Rachel, 2021. "Modeling hurricane evacuation behavior using a dynamic discrete choice framework," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 75-100.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aguirregabiria, Victor & Mira, Pedro, 2010. "Dynamic discrete choice structural models: A survey," Journal of Econometrics, Elsevier, vol. 156(1), pages 38-67, May.
    2. Rambha, Tarun & Nozick, Linda K. & Davidson, Rachel, 2021. "Modeling hurricane evacuation behavior using a dynamic discrete choice framework," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 75-100.
    3. Le-Yu Chen, 2009. "Identification of structural dynamic discrete choice models," CeMMAP working papers CWP08/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Liu, Yan & Cirillo, Cinzia, 2018. "A generalized dynamic discrete choice model for green vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 288-302.
    5. Kalouptsidi, Myrto & Scott, Paul & Souza-Rodrigues, Edouardo, 2015. "Identification of Counterfactuals and Payoffs in Dynamic Discrete Choice with an Application to Land Use," TSE Working Papers 15-596, Toulouse School of Economics (TSE).
    6. Myrto Kalouptsidi & Paul T. Scott & Eduardo Souza-Rodrigues, 2015. "Identification of Counterfactuals in Dynamic Discrete Choice Models," NBER Working Papers 21527, National Bureau of Economic Research, Inc.
    7. Sebastian Galiani & Juan Pantano, 2021. "Structural Models: Inception and Frontier," NBER Working Papers 28698, National Bureau of Economic Research, Inc.
    8. Victor Aguirregabiria, 2006. "Another Look at the Identification of Dynamic Discrete Decision Processes: With an Application to Retirement Behavior," 2006 Meeting Papers 169, Society for Economic Dynamics.
    9. Keane, Michael P. & Todd, Petra E. & Wolpin, Kenneth I., 2011. "The Structural Estimation of Behavioral Models: Discrete Choice Dynamic Programming Methods and Applications," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 4, pages 331-461, Elsevier.
    10. Peter Arcidiacono & Holger Sieg & Frank Sloan, 2007. "Living Rationally Under The Volcano? An Empirical Analysis Of Heavy Drinking And Smoking," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(1), pages 37-65, February.
    11. Arcidiacono, Peter & Miller, Robert A., 2020. "Identifying dynamic discrete choice models off short panels," Journal of Econometrics, Elsevier, vol. 215(2), pages 473-485.
    12. Kasahara, Hiroyuki & Shimotsu, Katsumi, 2008. "Pseudo-likelihood estimation and bootstrap inference for structural discrete Markov decision models," Journal of Econometrics, Elsevier, vol. 146(1), pages 92-106, September.
    13. Peter Haan & Victoria Prowse & Arne Uhlendorff, 2008. "Employment effects of welfare reforms: Evidence from a dynamic structural life-cycle model," PSE Working Papers halshs-00586748, HAL.
    14. Jason R. Blevins & Wei Shi & Donald R. Haurin & Stephanie Moulton, 2020. "A Dynamic Discrete Choice Model Of Reverse Mortgage Borrower Behavior," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 61(4), pages 1437-1477, November.
    15. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Manuel S. Santos, 2006. "Convergence Properties of the Likelihood of Computed Dynamic Models," Econometrica, Econometric Society, vol. 74(1), pages 93-119, January.
    16. Michael P. Keane & Kenneth I. Wolpin, 2009. "Empirical Applications of Discrete Choice Dynamic Programming Models," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 12(1), pages 1-22, January.
    17. Jaap H. Abbring, 2010. "Identification of Dynamic Discrete Choice Models," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 367-394, September.
    18. Peter Arcidiacono, Holger Sieg, Frank Sloan, 2001. "Living Rationally Under the Volcano? Heavy Drinking and Smoking Among the Elderly," Computing in Economics and Finance 2001 207, Society for Computational Economics.
    19. Jaap Abbring & James Heckman, 2008. "Dynamic policy analysis," CeMMAP working papers CWP05/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. Peter Arcidiacono & Robert A. Miller, 2011. "Conditional Choice Probability Estimation of Dynamic Discrete Choice Models With Unobserved Heterogeneity," Econometrica, Econometric Society, vol. 79(6), pages 1823-1867, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:106:y:2017:i:c:p:447-463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.