IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v95y2017icp285-304.html
   My bibliography  Save this article

Optimization of the issuance of evacuation orders under evolving hurricane conditions

Author

Listed:
  • Yi, Wenqi
  • Nozick, Linda
  • Davidson, Rachel
  • Blanton, Brian
  • Colle, Brian

Abstract

This paper develops a bi-level programming model to optimize the issuance of evacuation orders with explicit consideration of (i) the highly uncertain evolution of the storm, and (ii) the complexity of the behavioral reaction to evolving storm conditions. A solution procedure based on progressive hedging is developed. A realistic case study for the eastern portion of the state of North Carolina is presented. Through the case study we demonstrate (1) the value of developing an evacuation order policy based on the evolution of the storm in contrast to a static policy; (2) the richness in the insights that can be provided by linking the behavioral models for evacuation decision-making with dynamic traffic assignment-based network flow models in a hurricane context; and (3) the computational promise of a progressive hedging-based solution procedure to solve large instances of the model.

Suggested Citation

  • Yi, Wenqi & Nozick, Linda & Davidson, Rachel & Blanton, Brian & Colle, Brian, 2017. "Optimization of the issuance of evacuation orders under evolving hurricane conditions," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 285-304.
  • Handle: RePEc:eee:transb:v:95:y:2017:i:c:p:285-304
    DOI: 10.1016/j.trb.2016.10.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261516305331
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bish, Douglas R. & Sherali, Hanif D., 2013. "Aggregate-level demand management in evacuation planning," European Journal of Operational Research, Elsevier, vol. 224(1), pages 79-92.
    2. An, Shi & Cui, Na & Bai, Yun & Xie, Weijun & Chen, Mingliu & Ouyang, Yanfeng, 2015. "Reliable emergency service facility location under facility disruption, en-route congestion and in-facility queuing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 199-216.
    3. Janson, Bruce N., 1991. "Dynamic traffic assignment for urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 25(2-3), pages 143-161.
    4. Xu, Kecheng & Davidson, Rachel A. & Nozick, Linda K. & Wachtendorf, Tricia & DeYoung, Sarah E., 2016. "Hurricane evacuation demand models with a focus on use for prediction in future events," Transportation Research Part A: Policy and Practice, Elsevier, vol. 87(C), pages 90-101.
    5. Ng, ManWo & Diaz, Rafael & Behr, Joshua, 2015. "Departure time choice behavior for hurricane evacuation planning: The case of the understudied medically fragile population," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 215-226.
    6. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    7. Cova, Thomas J. & Johnson, Justin P., 2003. "A network flow model for lane-based evacuation routing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(7), pages 579-604, August.
    8. Bayram, Vedat & Tansel, Barbaros Ç. & Yaman, Hande, 2015. "Compromising system and user interests in shelter location and evacuation planning," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 146-163.
    9. Mustafa Anil Yazici & Kaan Ozbay, 2008. "Evacuation Modelling in the United States: Does the Demand Model Choice Matter?," Transport Reviews, Taylor & Francis Journals, vol. 28(6), pages 757-779, March.
    10. Sherali, Hanif D. & Carter, Todd B. & Hobeika, Antoine G., 1991. "A location-allocation model and algorithm for evacuation planning under hurricane/flood conditions," Transportation Research Part B: Methodological, Elsevier, vol. 25(6), pages 439-452, December.
    11. Haugen, Kjetil K. & Lokketangen, Arne & Woodruff, David L., 2001. "Progressive hedging as a meta-heuristic applied to stochastic lot-sizing," European Journal of Operational Research, Elsevier, vol. 132(1), pages 116-122, July.
    12. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    13. Faturechi, Reza & Miller-Hooks, Elise, 2014. "Travel time resilience of roadway networks under disaster," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 47-64.
    14. Sheu, Jiuh-Biing & Pan, Cheng, 2014. "A method for designing centralized emergency supply network to respond to large-scale natural disasters," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 284-305.
    15. Li, Anna C.Y. & Nozick, Linda & Xu, Ningxiong & Davidson, Rachel, 2012. "Shelter location and transportation planning under hurricane conditions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(4), pages 715-729.
    16. John Whitehead, 2005. "Environmental Risk and Averting Behavior: Predictive Validity of Jointly Estimated Revealed and Stated Behavior Data," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 32(3), pages 301-316, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:transb:v:106:y:2017:i:c:p:411-432 is not listed on IDEAS
    2. repec:eee:transb:v:106:y:2017:i:c:p:447-463 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:95:y:2017:i:c:p:285-304. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.