IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v50y2016i1p306-321.html
   My bibliography  Save this article

Sampling of Alternatives in Random Regret Minimization Models

Author

Listed:
  • C. Angelo Guevara

    (Faculty of Engineering and Applied Sciences, Universidad de los Andes, Las Condes, Santiago, Chile 762001)

  • Caspar G. Chorus

    (Faculty of Technology, Policy and Management, Delft University of Technology, 2628 BX Delft, Netherlands)

  • Moshe E. Ben-Akiva

    (Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

Abstract

Sampling of alternatives is often required in discrete choice models to reduce the computational burden and to avoid describing a large number of attributes. This approach has been used in many areas, including modeling of route choice, vehicle ownership, trip destination, residential location, and activity scheduling. The need for sampling of alternatives is accentuated for random regret minimization (RRM) models because, unlike random utility models, the regret function for each alternative depends on all of the alternatives in the choice-set. In this paper we develop and test a method to achieve consistency, asymptotic normality, and relative efficiency of the estimators while sampling alternatives in a class of models that includes RRM. The proposed method can be seen as an extension of the approach used to address sampling of alternatives in multivariate extreme value models. We illustrate the methodology using Monte Carlo experimentation and a case study with real data. Experiments show that the proposed method is practical, performs better than a truncated model, and results in finite-sample estimates that provide a good approximation of those obtained with a model considering all of the alternatives.

Suggested Citation

  • C. Angelo Guevara & Caspar G. Chorus & Moshe E. Ben-Akiva, 2016. "Sampling of Alternatives in Random Regret Minimization Models," Transportation Science, INFORMS, vol. 50(1), pages 306-321, February.
  • Handle: RePEc:inm:ortrsc:v:50:y:2016:i:1:p:306-321
    DOI: 10.1287/trsc.2014.0573
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.2014.0573
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2014.0573?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fosgerau, Mogens & Frejinger, Emma & Karlstrom, Anders, 2013. "A link based network route choice model with unrestricted choice set," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 70-80.
    2. Brian Lee & Paul Waddell, 2010. "Residential mobility and location choice: a nested logit model with sampling of alternatives," Transportation, Springer, vol. 37(4), pages 587-601, July.
    3. Bowman, J. L. & Ben-Akiva, M. E., 2001. "Activity-based disaggregate travel demand model system with activity schedules," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 1-28, January.
    4. Ernst R. Berndt & Bronwyn H. Hall & Robert E. Hall & Jerry A. Hausman, 1974. "Estimation and Inference in Nonlinear Structural Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 3, number 4, pages 653-665, National Bureau of Economic Research, Inc.
    5. Chorus, Caspar & van Cranenburgh, Sander & Dekker, Thijs, 2014. "Random regret minimization for consumer choice modeling: Assessment of empirical evidence," Journal of Business Research, Elsevier, vol. 67(11), pages 2428-2436.
    6. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, January.
    7. Lemp, Jason D. & Kockelman, Kara M., 2012. "Strategic sampling for large choice sets in estimation and application," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 602-613.
    8. Berkovec, James & Rust, John, 1985. "A nested logit model of automobile holdings for one vehicle households," Transportation Research Part B: Methodological, Elsevier, vol. 19(4), pages 275-285, August.
    9. Chiou, Lesley & Walker, Joan L., 2007. "Masking identification of discrete choice models under simulation methods," Journal of Econometrics, Elsevier, vol. 141(2), pages 683-703, December.
    10. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    11. Frejinger, E. & Bierlaire, M. & Ben-Akiva, M., 2009. "Sampling of alternatives for route choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 984-994, December.
    12. Bierlaire, M. & Bolduc, D. & McFadden, D., 2008. "The estimation of generalized extreme value models from choice-based samples," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 381-394, May.
    13. Dagsvik, J.K., 1989. "The Generalized Extreme Value Random Utility Model For Continuous Choice," Papers 8941, Tilburg - Center for Economic Research.
    14. Caspar G. Chorus, 2012. "Random Regret-based Discrete Choice Modeling," SpringerBriefs in Business, Springer, edition 127, number 978-3-642-29151-7, October.
    15. Dagsvik, J., 1989. "The Generalized Extreme Value Random Utility Model for Continuous Choice," Discussion Paper 1989-41, Tilburg University, Center for Economic Research.
    16. Dagsvik, J., 1989. "The Generalized Extreme Value Random Utility Model for Continuous Choice," Other publications TiSEM 0149d07a-6190-41b5-9d7b-b, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. González-Valdés, Felipe & Ortúzar, Juan de Dios, 2018. "The Stochastic Satisficing model: A bounded rationality discrete choice model," Journal of choice modelling, Elsevier, vol. 27(C), pages 74-87.
    2. van Cranenburgh, Sander & Chorus, Caspar G., 2018. "Does the decision rule matter for large-scale transport models?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 338-353.
    3. van Cranenburgh, Sander & Guevara, Cristian Angelo & Chorus, Caspar G., 2015. "New insights on random regret minimization models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 91-109.
    4. Bibhuti Sharma & Mark Hickman & Neema Nassir, 2019. "Park-and-ride lot choice model using random utility maximization and random regret minimization," Transportation, Springer, vol. 46(1), pages 217-232, February.
    5. van Cranenburgh, Sander & Prato, Carlo G., 2016. "On the robustness of random regret minimization modelling outcomes towards omitted attributes," Journal of choice modelling, Elsevier, vol. 18(C), pages 51-70.
    6. Gonzalez-Valdes, Felipe & Raveau, Sebastián, 2018. "Identifying the presence of heterogeneous discrete choice heuristics at an individual level," Journal of choice modelling, Elsevier, vol. 28(C), pages 28-40.
    7. Geržinič, Nejc & van Cranenburgh, Sander & Cats, Oded & Lancsar, Emily & Chorus, Caspar, 2021. "Estimating decision rule differences between ‘best’ and ‘worst’ choices in a sequential best worst discrete choice experiment," Journal of choice modelling, Elsevier, vol. 41(C).
    8. Caspar G. Chorus, 2014. "Capturing alternative decision rules in travel choice models: a critical discussion," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 13, pages 290-310, Edward Elgar Publishing.
    9. C. Angelo Guevara, 2022. "A Note on "A survey of preference estimation with unobserved choice set heterogeneity" by Gregory S. Crawford, Rachel Griffith, and Alessandro Iaria," Papers 2205.00852, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guevara, C. Angelo & Ben-Akiva, Moshe E., 2013. "Sampling of alternatives in Multivariate Extreme Value (MEV) models," Transportation Research Part B: Methodological, Elsevier, vol. 48(C), pages 31-52.
    2. Guevara, C. Angelo & Ben-Akiva, Moshe E., 2013. "Sampling of alternatives in Logit Mixture models," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 185-198.
    3. Hamzeh Alizadeh & Bilal Farooq & Catherine Morency & Nicolas Saunier, 2018. "On the role of bridges as anchor points in route choice modeling," Transportation, Springer, vol. 45(5), pages 1181-1206, September.
    4. Mohammad Nurul Hassan & Taha Hossein Rashidi & Neema Nassir, 2021. "Consideration of different travel strategies and choice set sizes in transit path choice modelling," Transportation, Springer, vol. 48(2), pages 723-746, April.
    5. Lemp, Jason D. & Kockelman, Kara M., 2012. "Strategic sampling for large choice sets in estimation and application," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 602-613.
    6. Mai, Tien & Frejinger, Emma & Bastin, Fabian, 2015. "A misspecification test for logit based route choice models," Economics of Transportation, Elsevier, vol. 4(4), pages 215-226.
    7. Leite Mariante, Gabriel & Ma, Tai-Yu & Van Acker, Véronique, 2018. "Modeling discretionary activity location choice using detour factors and sampling of alternatives for mixed logit models," Journal of Transport Geography, Elsevier, vol. 72(C), pages 151-165.
    8. Mai, Tien & Fosgerau, Mogens & Frejinger, Emma, 2015. "A nested recursive logit model for route choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 100-112.
    9. Tien Mai & Fabian Bastin & Emma Frejinger, 2018. "A decomposition method for estimating recursive logit based route choice models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 253-275, September.
    10. Griffith, Rachel & Crawford, Gregory & Iaria, Alessandro, 2016. "Preference Estimation with Unobserved Choice Set Heterogeneity using Sufficient Sets," CEPR Discussion Papers 11675, C.E.P.R. Discussion Papers.
    11. John Buckell & Vrinda Vasavada & Sarah Wordsworth & Dean A. Regier & Matthew Quaife, 2022. "Utility maximization versus regret minimization in health choice behavior: Evidence from four datasets," Health Economics, John Wiley & Sons, Ltd., vol. 31(2), pages 363-381, February.
    12. Agimass, Fitalew & Lundhede, Thomas & Panduro, Toke Emil & Jacobsen, Jette Bredahl, 2018. "The choice of forest site for recreation: A revealed preference analysis using spatial data," Ecosystem Services, Elsevier, vol. 31(PC), pages 445-454.
    13. Blom Västberg, Oskar & Karlström, Anders & Jonsson, Daniel & Sundberg, Marcus, 2016. "Including time in a travel demand model using dynamic discrete choice," MPRA Paper 75336, University Library of Munich, Germany, revised 11 Nov 2016.
    14. Arne Risa Hole & Hong Il Yoo, 2017. "The use of heuristic optimization algorithms to facilitate maximum simulated likelihood estimation of random parameter logit models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(5), pages 997-1013, November.
    15. Heiss, Florian & Winschel, Viktor, 2008. "Likelihood approximation by numerical integration on sparse grids," Journal of Econometrics, Elsevier, vol. 144(1), pages 62-80, May.
    16. Martin, Elliott William, 2009. "New Vehicle Choice, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and the Gasoline Tax," University of California Transportation Center, Working Papers qt5gd206wv, University of California Transportation Center.
    17. Martin, Elliot William, 2009. "New Vehicle Choices, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and Gasoline Tax," University of California Transportation Center, Working Papers qt6sz198c2, University of California Transportation Center.
    18. Stijn Kelchtermans & Frank Verboven, 2010. "Participation and study decisions in a public system of higher education," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(3), pages 355-391.
    19. Chen, Anning, 2011. "Reliable GPS Integer Ambiguity Resolution," University of California Transportation Center, Working Papers qt9gs0t2f9, University of California Transportation Center.
    20. Haghani, Milad & Sarvi, Majid, 2019. "Laboratory experimentation and simulation of discrete direction choices: Investigating hypothetical bias, decision-rule effect and external validity based on aggregate prediction measures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 134-157.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:50:y:2016:i:1:p:306-321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.