IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v192y2025ics0191261524002534.html
   My bibliography  Save this article

Revisiting McFadden’s correction factor for sampling of alternatives in multinomial logit and mixed multinomial logit models

Author

Listed:
  • Dekker, Thijs
  • Bansal, Prateek
  • Huo, Jinghai

Abstract

When estimating multinomial logit (MNL) models where choices are made from a large set of available alternatives computational benefits can be achieved by estimating a quasi-likelihood function based on a sampled subset of alternatives in combination with ‘McFadden’s correction factor’. In this paper, we theoretically prove that McFadden’s correction factor minimises the expected information loss in the parameters of interest and thereby has convenient finite (and large sample) properties. That is, in the context of Bayesian estimation the use of sampling of alternatives in combination with McFadden’s correction factor provides the best approximation of the posterior distribution for the parameters of interest irrespective of sample size. As sample sizes become sufficiently large consistent point estimates for MNL can be obtained as per McFadden’s original proof. McFadden’s correction factor can therefore effectively be applied in the context of Bayesian MNL models. We extend these results to the context of mixed multinomial logit models (MMNL) by using the property of data augmentation in Bayesian estimation. McFadden’s correction factor minimises the expected information loss with respect to the augmented individual-level parameters, and in turn also for the population parameters characterising the shape and location of the mixing density in MMNL. Again, the results apply to finite and large samples and most importantly circumvent the need for additional correction factors previously identified for estimating MMNL models using maximum simulated likelihood. Monte Carlo simulations validate this result for sampling of alternatives in Bayesian MMNL models.

Suggested Citation

  • Dekker, Thijs & Bansal, Prateek & Huo, Jinghai, 2025. "Revisiting McFadden’s correction factor for sampling of alternatives in multinomial logit and mixed multinomial logit models," Transportation Research Part B: Methodological, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:transb:v:192:y:2025:i:c:s0191261524002534
    DOI: 10.1016/j.trb.2024.103129
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261524002534
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2024.103129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akinc, Deniz & Vandebroek, Martina, 2018. "Bayesian estimation of mixed logit models: Selecting an appropriate prior for the covariance matrix," Journal of choice modelling, Elsevier, vol. 29(C), pages 133-151.
    2. Sinha, Paramita & Caulkins, Martha L. & Cropper, Maureen L., 2018. "Household location decisions and the value of climate amenities," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 608-637.
    3. von Haefen, Roger H. & Domanski, Adam, 2018. "Estimation and welfare analysis from mixed logit models with large choice sets," Journal of Environmental Economics and Management, Elsevier, vol. 90(C), pages 101-118.
    4. Tsoleridis, Panagiotis & Choudhury, Charisma F. & Hess, Stephane, 2022. "Utilising activity space concepts to sampling of alternatives for mode and destination choice modelling of discretionary activities," Journal of choice modelling, Elsevier, vol. 42(C).
    5. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, June.
    6. Bansal, Prateek & Krueger, Rico & Bierlaire, Michel & Daziano, Ricardo A. & Rashidi, Taha H., 2020. "Bayesian estimation of mixed multinomial logit models: Advances and simulation-based evaluations," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 124-142.
    7. David Revelt & Kenneth Train, 1998. "Mixed Logit With Repeated Choices: Households' Choices Of Appliance Efficiency Level," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 647-657, November.
    8. Hess, Stephane & Train, Kenneth E. & Polak, John W., 2006. "On the use of a Modified Latin Hypercube Sampling (MLHS) method in the estimation of a Mixed Logit Model for vehicle choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(2), pages 147-163, February.
    9. Chan,Joshua & Koop,Gary & Poirier,Dale J. & Tobias,Justin L., 2019. "Bayesian Econometric Methods," Cambridge Books, Cambridge University Press, number 9781108423380, Enero-Abr.
    10. C. Angelo Guevara & Caspar G. Chorus & Moshe E. Ben-Akiva, 2016. "Sampling of Alternatives in Random Regret Minimization Models," Transportation Science, INFORMS, vol. 50(1), pages 306-321, February.
    11. Lemp, Jason D. & Kockelman, Kara M., 2012. "Strategic sampling for large choice sets in estimation and application," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 602-613.
    12. Rodrigues, Filipe, 2022. "Scaling Bayesian inference of mixed multinomial logit models to large datasets," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 1-17.
    13. Keane, Michael P. & Wasi, Nada, 2016. "How to model consumer heterogeneity? Lessons from three case studies on SP and RP data," Research in Economics, Elsevier, vol. 70(2), pages 197-231.
    14. Guevara, C. Angelo & Ben-Akiva, Moshe E., 2013. "Sampling of alternatives in Logit Mixture models," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 185-198.
    15. Guevara, C. Angelo & Ben-Akiva, Moshe E., 2013. "Sampling of alternatives in Multivariate Extreme Value (MEV) models," Transportation Research Part B: Methodological, Elsevier, vol. 48(C), pages 31-52.
    16. Chandra R. Bhat, 1997. "An Endogenous Segmentation Mode Choice Model with an Application to Intercity Travel," Transportation Science, INFORMS, vol. 31(1), pages 34-48, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krueger, Rico & Bierlaire, Michel & Daziano, Ricardo A. & Rashidi, Taha H. & Bansal, Prateek, 2021. "Evaluating the predictive abilities of mixed logit models with unobserved inter- and intra-individual heterogeneity," Journal of choice modelling, Elsevier, vol. 41(C).
    2. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    3. Leite Mariante, Gabriel & Ma, Tai-Yu & Van Acker, Véronique, 2018. "Modeling discretionary activity location choice using detour factors and sampling of alternatives for mixed logit models," Journal of Transport Geography, Elsevier, vol. 72(C), pages 151-165.
    4. Cherchi, Elisabetta & Guevara, Cristian Angelo, 2012. "A Monte Carlo experiment to analyze the curse of dimensionality in estimating random coefficients models with a full variance–covariance matrix," Transportation Research Part B: Methodological, Elsevier, vol. 46(2), pages 321-332.
    5. Stephane Hess, 2014. "Latent class structures: taste heterogeneity and beyond," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 14, pages 311-330, Edward Elgar Publishing.
    6. Rico Krueger & Akshay Vij & Taha H. Rashidi, 2018. "A Dirichlet Process Mixture Model of Discrete Choice," Papers 1801.06296, arXiv.org.
    7. Kassie, Girma T. & Zeleke, Fresenbet & Birhanu, Mulugeta Y. & Scarpa, Riccardo, 2020. "Reminder Nudge, Attribute Nonattendance, and Willingness to Pay in a Discrete Choice Experiment," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304208, Agricultural and Applied Economics Association.
    8. Staus, Alexander, 2008. "Standard and Shuffled Halton Sequences in a Mixed Logit Model," Working Papers 93856, Universitaet Hohenheim, Institute of Agricultural Policy and Agricultural Markets.
    9. Denise Doiron & Hong Il Yoo, 2020. "Stated preferences over job characteristics: A panel study," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 53(1), pages 43-82, February.
    10. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    11. Marco A. Palma & Dmitry V. Vedenov & David Bessler, 2020. "The order of variables, simulation noise, and accuracy of mixed logit estimates," Empirical Economics, Springer, vol. 58(5), pages 2049-2083, May.
    12. Arne Risa Hole & Hong Il Yoo, 2017. "The use of heuristic optimization algorithms to facilitate maximum simulated likelihood estimation of random parameter logit models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(5), pages 997-1013, November.
    13. Mohammed H. Alemu & Søren B. Olsen, 2017. "Can a Repeated Opt-Out Reminder remove hypothetical bias in discrete choice experiments? An application to consumer valuation of novel food products," IFRO Working Paper 2017/05, University of Copenhagen, Department of Food and Resource Economics.
    14. Czajkowski, Mikołaj & Budziński, Wiktor, 2019. "Simulation error in maximum likelihood estimation of discrete choice models," Journal of choice modelling, Elsevier, vol. 31(C), pages 73-85.
    15. Frith, Michael J., 2019. "Modelling taste heterogeneity regarding offence location choices," Journal of choice modelling, Elsevier, vol. 33(C).
    16. Elias, Julio & Lacetera, Nicola & Macis, Mario, 2016. "Efficiency-Morality Trade-Offs in Repugnant Transactions: A Choice Experiment," IZA Discussion Papers 10187, Institute of Labor Economics (IZA).
    17. Xu, Min & Meng, Qiang & Liu, Kai & Yamamoto, Toshiyuki, 2017. "Joint charging mode and location choice model for battery electric vehicle users," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 68-86.
    18. von Haefen, Roger H. & Domanski, Adam, 2018. "Estimation and welfare analysis from mixed logit models with large choice sets," Journal of Environmental Economics and Management, Elsevier, vol. 90(C), pages 101-118.
    19. Angel Bujosa & Antoni Riera & Robert Hicks, 2010. "Combining Discrete and Continuous Representations of Preference Heterogeneity: A Latent Class Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(4), pages 477-493, December.
    20. Keya, Nowreen & Anowar, Sabreena & Bhowmik, Tanmoy & Eluru, Naveen, 2021. "A joint framework for modeling freight mode and destination choice: Application to the US commodity flow survey data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:192:y:2025:i:c:s0191261524002534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.