IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v35y2001i1p1-28.html
   My bibliography  Save this article

Activity-based disaggregate travel demand model system with activity schedules

Author

Listed:
  • Bowman, J. L.
  • Ben-Akiva, M. E.

Abstract

We present an integrated activity-based discrete choice model system of an individual's activity and travel schedule, for forecasting urban passenger travel demand. A prototype demonstrates the system concept using a 1991 Boston travel survey and transportation system level of service data. The model system represents a person's choice of activities and associated travel as an activity pattern overarching a set of tours. A tour is defined as the travel from home to one or more activity locations and back home again. The activity pattern consists of important decisions that provide overall structure for the day's activities and travel. In the prototype the activity pattern includes (a) the primary - most important - activity of the day, with one alternative being to remain at home for all the day's activities; (b) the type of tour for the primary activity, including the number, purpose and sequence of activity stops; and (c) the number and purpose of secondary - additional - tours. Tour models include the choice of time of day, destination and mode of travel, and are conditioned by the choice of activity pattern. The choice of activity pattern is influenced by the expected maximum utility derived from the available tour alternatives.

Suggested Citation

  • Bowman, J. L. & Ben-Akiva, M. E., 2001. "Activity-based disaggregate travel demand model system with activity schedules," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 1-28, January.
  • Handle: RePEc:eee:transa:v:35:y:2001:i:1:p:1-28
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(99)00043-9
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adler, Thomas & Ben-Akiva, Moshe, 1979. "A theoretical and empirical model of trip chaining behavior," Transportation Research Part B: Methodological, Elsevier, vol. 13(3), pages 243-257, September.
    2. Bhat, Chandra R., 1996. "A hazard-based duration model of shopping activity with nonparametric baseline specification and nonparametric control for unobserved heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 30(3), pages 189-207, June.
    3. E I Pas, 1984. "The Effect of Selected Sociodemographic Characteristics on Daily Travel-Activity Behavior," Environment and Planning A, , vol. 16(5), pages 571-581, May.
    4. Kitamura, Ryuichi, 1984. "Incorporating trip chaining into analysis of destination choice," Transportation Research Part B: Methodological, Elsevier, vol. 18(1), pages 67-81, February.
    5. Bhat, Chandra R. & Koppelman, Frank S., 1993. "A conceptual framework of individual activity program generation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 27(6), pages 433-446, November.
    6. E I Pas, 1984. "The effect of selected sociodemographic characteristics on daily travel-activity behavior," Environment and Planning A, Pion Ltd, London, vol. 16(5), pages 571-581, May.
    7. Horowitz, Joel, 1980. "A utility maximizing model of the demand for multi-destination non-work travel," Transportation Research Part B: Methodological, Elsevier, vol. 14(4), pages 369-386, December.
    8. McFadden, Daniel, 1987. "Regression-based specification tests for the multinomial logit model," Journal of Econometrics, Elsevier, vol. 34(1-2), pages 63-82.
    9. Recker, W. W., 1995. "The household activity pattern problem: General formulation and solution," Transportation Research Part B: Methodological, Elsevier, vol. 29(1), pages 61-77, February.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:35:y:2001:i:1:p:1-28. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.