IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v41y2014i1p37-55.html
   My bibliography  Save this article

A network equilibrium approach for modelling activity-travel pattern scheduling problems in multi-modal transit networks with uncertainty

Author

Listed:
  • Xiao Fu
  • William Lam

Abstract

An understanding of the interaction between individuals’ activities and travel choice behaviour plays an important role in long-term transit service planning. In this paper, an activity-based network equilibrium model for scheduling daily activity-travel patterns (DATPs) in multi-modal transit networks under uncertainty is presented. In the proposed model, the DATP choice problem is transformed into a static traffic assignment problem by constructing a new super-network platform. With the use of the new super-network platform, individuals’ activity and travel choices such as time and space coordination, activity location, activity sequence and duration, and route/mode choices, can be simultaneously considered. In order to capture the stochastic characteristics of different activities, activity utilities are assumed in this study to be time-dependent and stochastic in relation to the activity types. A concept of DATP budget utility is proposed for modelling the uncertainty of activity utility. An efficient solution algorithm without prior enumeration of DATPs is developed for solving the DATP scheduling problem in multi-modal transit networks. Numerical examples are used to illustrate the application of the proposed model and the solution algorithm. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Xiao Fu & William Lam, 2014. "A network equilibrium approach for modelling activity-travel pattern scheduling problems in multi-modal transit networks with uncertainty," Transportation, Springer, vol. 41(1), pages 37-55, January.
  • Handle: RePEc:kap:transp:v:41:y:2014:i:1:p:37-55
    DOI: 10.1007/s11116-013-9470-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11116-013-9470-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-013-9470-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adler, Thomas & Ben-Akiva, Moshe, 1979. "A theoretical and empirical model of trip chaining behavior," Transportation Research Part B: Methodological, Elsevier, vol. 13(3), pages 243-257, September.
    2. Supernak, Janusz, 1992. "Temporal utility profiles of activities and travel: Uncertainty and decision making," Transportation Research Part B: Methodological, Elsevier, vol. 26(1), pages 60-76, February.
    3. Lam, William H. K. & Yin, Yafeng, 2001. "An activity-based time-dependent traffic assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 35(6), pages 549-574, July.
    4. Moshe Hirsh & Joseph N. Prashkea & Moshe Ben-Akiva, 1986. "Dynamic Model of Weekly Activity Pattern," Transportation Science, INFORMS, vol. 20(1), pages 24-36, February.
    5. Hu Shao & William Lam & Mei Tam, 2006. "A Reliability-Based Stochastic Traffic Assignment Model for Network with Multiple User Classes under Uncertainty in Demand," Networks and Spatial Economics, Springer, vol. 6(3), pages 173-204, September.
    6. Lo, Hong K. & Yip, C. W. & Wan, K. H., 2003. "Modeling transfer and non-linear fare structure in multi-modal network," Transportation Research Part B: Methodological, Elsevier, vol. 37(2), pages 149-170, February.
    7. Tong, C.O. & Wong, S.C., 1998. "A stochastic transit assignment model using a dynamic schedule-based network," Transportation Research Part B: Methodological, Elsevier, vol. 33(2), pages 107-121, April.
    8. Ram Pendyala & Toshiyuki Yamamoto & Ryuichi Kitamura, 2002. "On the formulation of time-space prisms to model constraints on personal activity-travel engagement," Transportation, Springer, vol. 29(1), pages 73-94, February.
    9. Zhang, Xiaoning & Yang, Hai & Huang, Hai-Jun & Zhang, H. Michael, 2005. "Integrated scheduling of daily work activities and morning-evening commutes with bottleneck congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(1), pages 41-60, January.
    10. F. Guerriero & R. Musmanno, 2001. "Label Correcting Methods to Solve Multicriteria Shortest Path Problems," Journal of Optimization Theory and Applications, Springer, vol. 111(3), pages 589-613, December.
    11. William Lam & Hai-jun Huang, 2002. "A combined activity/travel choice model for congested road networks with queues," Transportation, Springer, vol. 29(1), pages 5-29, February.
    12. Recker, W. W., 1995. "The household activity pattern problem: General formulation and solution," Transportation Research Part B: Methodological, Elsevier, vol. 29(1), pages 61-77, February.
    13. Hai-Jun Huang & William Lam, 2005. "A Stochastic Model for Combined Activity/Destination/Route Choice Problems," Annals of Operations Research, Springer, vol. 135(1), pages 111-125, March.
    14. Nielsen, Otto Anker, 2000. "A stochastic transit assignment model considering differences in passengers utility functions," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 377-402, June.
    15. Zhi-Chun Li & William Lam & S. Wong & A. Sumalee, 2010. "An activity-based approach for scheduling multimodal transit services," Transportation, Springer, vol. 37(5), pages 751-774, September.
    16. Toshiyuki Yamamoto & Ryuichi Kitamura, 1999. "An analysis of time allocation to in-home and out-of-home discretionary activities across working days and non- working days," Transportation, Springer, vol. 26(2), pages 231-250, May.
    17. Chow, Joseph Y.J. & Recker, Will W., 2012. "Inverse optimization with endogenous arrival time constraints to calibrate the household activity pattern problem," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 463-479.
    18. Gitakrishnan Ramadurai & Satish Ukkusuri, 2010. "Dynamic User Equilibrium Model for Combined Activity-Travel Choices Using Activity-Travel Supernetwork Representation," Networks and Spatial Economics, Springer, vol. 10(2), pages 273-292, June.
    19. Kitamura, Ryuichi, 1984. "Incorporating trip chaining into analysis of destination choice," Transportation Research Part B: Methodological, Elsevier, vol. 18(1), pages 67-81, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C., 2014. "Bottleneck model revisited: An activity-based perspective," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 262-287.
    2. Li, Qing & Liao, Feixiong & Timmermans, Harry J.P. & Huang, Haijun & Zhou, Jing, 2018. "Incorporating free-floating car-sharing into an activity-based dynamic user equilibrium model: A demand-side model," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 102-123.
    3. Sheila Ferrer & Tomás Ruiz, 2017. "Comparison on travel scheduling between driving and walking trips by habitual car users," Transportation, Springer, vol. 44(1), pages 27-48, January.
    4. Ge Gao & Huijun Sun & Jianjun Wu, 2019. "Activity-based trip chaining behavior analysis in the network under the parking fee scheme," Transportation, Springer, vol. 46(3), pages 647-669, June.
    5. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C., 2017. "Step tolling in an activity-based bottleneck model," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 306-334.
    6. Xiao Fu & William H. K. Lam, 2018. "Modelling joint activity-travel pattern scheduling problem in multi-modal transit networks," Transportation, Springer, vol. 45(1), pages 23-49, January.
    7. Laura Alessandretti & Luis Guillermo Natera Orozco & Meead Saberi & Michael Szell & Federico Battiston, 2023. "Multimodal urban mobility and multilayer transport networks," Environment and Planning B, , vol. 50(8), pages 2038-2070, October.
    8. Cantelmo, Guido & Viti, Francesco, 2019. "Incorporating activity duration and scheduling utility into equilibrium-based Dynamic Traffic Assignment," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 365-390.
    9. Vo, Khoa D. & Lam, William H.K. & Chen, Anthony & Shao, Hu, 2020. "A household optimum utility approach for modeling joint activity-travel choices in congested road networks," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 93-125.
    10. Gu, Yu & Fu, Xiao & Liu, Zhiyuan & Xu, Xiangdong & Chen, Anthony, 2020. "Performance of transportation network under perturbations: Reliability, vulnerability, and resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    11. Li, Qing & Liao, Feixiong, 2020. "Incorporating vehicle self-relocations and traveler activity chains in a bi-level model of optimal deployment of shared autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 151-175.
    12. Fu, Xiao & Wu, Youqi & Huang, Di & Wu, Jianjun, 2022. "An activity-based model for transit network design and activity location planning in a three-party game framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    13. Xie, Chi & Wang, Tong-Gen & Pu, Xiaoting & Karoonsoontawong, Ampol, 2017. "Path-constrained traffic assignment: Modeling and computing network impacts of stochastic range anxiety," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 136-157.
    14. Cantelmo, Guido & Viti, Francesco & Cipriani, Ernesto & Nigro, Marialisa, 2018. "A utility-based dynamic demand estimation model that explicitly accounts for activity scheduling and duration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 303-320.
    15. Wang, Dong & Liao, Feixiong & Gao, Ziyou & Rasouli, Soora & Huang, Hai-Jun, 2020. "Tolerance-based column generation for boundedly rational dynamic activity-travel assignment in large-scale networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    16. Liu, Peng & Liao, Feixiong & Tian, Qiong & Huang, Hai-Jun & Timmermans, Harry, 2020. "Day-to-day needs-based activity-travel dynamics and equilibria in multi-state supernetworks," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 208-227.
    17. Qing Li & Feixiong Liao & Harry J. P. Timmermans & Jing Zhou, 2016. "A reference-dependent user equilibrium model for activity-travel scheduling," Transportation, Springer, vol. 43(6), pages 1061-1077, November.
    18. Liu, Peng & Liao, Feixiong & Huang, Hai-Jun & Timmermans, Harry, 2015. "Dynamic activity-travel assignment in multi-state supernetworks," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 656-671.
    19. Fu, Xiao & Zuo, Yufan & Zhang, Shanqi & Liu, Zhiyuan, 2022. "Measuring joint space-time accessibility in transit network under travel time uncertainty," Transport Policy, Elsevier, vol. 116(C), pages 355-368.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao Fu & William H. K. Lam, 2018. "Modelling joint activity-travel pattern scheduling problem in multi-modal transit networks," Transportation, Springer, vol. 45(1), pages 23-49, January.
    2. Zhi-Chun Li & William Lam & S. Wong & A. Sumalee, 2010. "An activity-based approach for scheduling multimodal transit services," Transportation, Springer, vol. 37(5), pages 751-774, September.
    3. Liu, Peng & Liao, Feixiong & Tian, Qiong & Huang, Hai-Jun & Timmermans, Harry, 2020. "Day-to-day needs-based activity-travel dynamics and equilibria in multi-state supernetworks," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 208-227.
    4. Xie, Chi & Wang, Tong-Gen & Pu, Xiaoting & Karoonsoontawong, Ampol, 2017. "Path-constrained traffic assignment: Modeling and computing network impacts of stochastic range anxiety," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 136-157.
    5. Zhang, Xiaoning & Yang, Hai & Huang, Hai-Jun & Zhang, H. Michael, 2005. "Integrated scheduling of daily work activities and morning-evening commutes with bottleneck congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(1), pages 41-60, January.
    6. Wang, Dong & Liao, Feixiong & Gao, Ziyou & Rasouli, Soora & Huang, Hai-Jun, 2020. "Tolerance-based column generation for boundedly rational dynamic activity-travel assignment in large-scale networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    7. Vo, Khoa D. & Lam, William H.K. & Chen, Anthony & Shao, Hu, 2020. "A household optimum utility approach for modeling joint activity-travel choices in congested road networks," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 93-125.
    8. Liu, Peng & Liao, Feixiong & Huang, Hai-Jun & Timmermans, Harry, 2015. "Dynamic activity-travel assignment in multi-state supernetworks," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 656-671.
    9. Cantelmo, Guido & Viti, Francesco, 2019. "Incorporating activity duration and scheduling utility into equilibrium-based Dynamic Traffic Assignment," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 365-390.
    10. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C., 2014. "Bottleneck model revisited: An activity-based perspective," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 262-287.
    11. Hamdouch, Younes & Szeto, W.Y. & Jiang, Y., 2014. "A new schedule-based transit assignment model with travel strategies and supply uncertainties," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 35-67.
    12. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C., 2017. "Step tolling in an activity-based bottleneck model," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 306-334.
    13. Fu, Xiao & Wu, Youqi & Huang, Di & Wu, Jianjun, 2022. "An activity-based model for transit network design and activity location planning in a three-party game framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    14. Kang, Jee Eun & Chow, Joseph Y.J. & Recker, Will W., 2013. "On activity-based network design problems," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 398-418.
    15. Bowman, J. L. & Ben-Akiva, M. E., 2001. "Activity-based disaggregate travel demand model system with activity schedules," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 1-28, January.
    16. Yashar Khayati & Jee Eun Kang & Mark Karwan & Chase Murray, 2021. "Household Activity Pattern Problem with Autonomous Vehicles," Networks and Spatial Economics, Springer, vol. 21(3), pages 609-637, September.
    17. Li, Qing & Liao, Feixiong & Timmermans, Harry J.P. & Huang, Haijun & Zhou, Jing, 2018. "Incorporating free-floating car-sharing into an activity-based dynamic user equilibrium model: A demand-side model," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 102-123.
    18. Qing Li & Feixiong Liao & Harry J. P. Timmermans & Jing Zhou, 2016. "A reference-dependent user equilibrium model for activity-travel scheduling," Transportation, Springer, vol. 43(6), pages 1061-1077, November.
    19. Chow, Joseph Y.J. & Recker, Will W., 2012. "Inverse optimization with endogenous arrival time constraints to calibrate the household activity pattern problem," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 463-479.
    20. Liu, Xintao & Yan, Wai Yeung & Chow, Joseph Y.J., 2015. "Time-geographic relationships between vector fields of activity patterns and transport systems," Journal of Transport Geography, Elsevier, vol. 42(C), pages 22-33.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:41:y:2014:i:1:p:37-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.