IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v194y2025ics1366554524005209.html
   My bibliography  Save this article

Activity capacity-based urban shrinkage trend prediction model and response strategy comparison approach

Author

Listed:
  • Zhang, Tong
  • Li, Dawei
  • Song, Yuchen
  • Zhang, Junyi
  • Yang, Junyan
  • Shi, Yi

Abstract

Many countries are facing escalating urban shrinkage, with vast swathes of urban areas becoming desolate. Urban managers urgently need strategies to mitigate land and infrastructure wastage. Although many studies have developed trend prediction models based on single-source data, these models cannot analyze the causes, evolution, and impacts of urban shrinkage using multiple data sources and residents’ behavioral insights. Urban shrinkage significantly affects activity and travel flows, if future trends in these flows can be predicted, urban managers can identify facilities likely to experience reduced flow and develop targeted responses. Traffic network capacity is instrumental in assessing the ability to accommodate travel flow, but the origin–destination (O-D) demand-oriented approach falls short in capturing the nuances of travel times, modes, and purposes from a travel motivation standpoint. It also fails to provide demand information related to activities, such as activity locations, activity times, and activity sequences. This paper introduces a novel concept: activity capacity, which provides two key pieces of information: (1) the maximum activity flows an activity-travel network can accommodate under shrinkage; (2) the corresponding distribution of activity and travel flows. We establish a bi-level programming model. The upper level, the Urban Shrinkage-oriented Activity Capacity (USAC) model, seeks to maximize activity demand within the constraints of land use, urn shrinkage, and activity demand structure. The lower level, an Activity Capacity-oriented Activity-Travel Assignment (AC-ATA) model, particularly accounts for online-activity utility and travelers’ perceptual errors regarding activity node flows. A tailored Sensitivity Analysis-Based (SAB) method is employed to solve the USAC problem. Numerical examples demonstrate the USAC model’s effectiveness in predicting activity capacity and flow distributions under urban shrinkage and in evaluating response strategies, providing planners with critical and valuable insights. Additionally, the model’s sensitivity to parameters related to online activity, land use constraints, and travel costs is analyzed.

Suggested Citation

  • Zhang, Tong & Li, Dawei & Song, Yuchen & Zhang, Junyi & Yang, Junyan & Shi, Yi, 2025. "Activity capacity-based urban shrinkage trend prediction model and response strategy comparison approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:transe:v:194:y:2025:i:c:s1366554524005209
    DOI: 10.1016/j.tre.2024.103929
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524005209
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103929?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruben Cordera & Pierluigi Coppola & Luigi dell’Olio & Ángel Ibeas, 2017. "Is accessibility relevant in trip generation? Modelling the interaction between trip generation and accessibility taking into account spatial effects," Transportation, Springer, vol. 44(6), pages 1577-1603, November.
    2. Xu, Xiangdong & Chen, Anthony & Jansuwan, Sarawut & Yang, Chao & Ryu, Seungkyu, 2018. "Transportation network redundancy: Complementary measures and computational methods," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 68-85.
    3. Florian Bartholomae & Chang Woon Nam & Alina Schoenberg, 2017. "Urban shrinkage and resurgence in Germany," Urban Studies, Urban Studies Journal Limited, vol. 54(12), pages 2701-2718, September.
    4. Lam, William H. K. & Yin, Yafeng, 2001. "An activity-based time-dependent traffic assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 35(6), pages 549-574, July.
    5. Wang, Dong & Liao, Feixiong & Gao, Ziyou & Rasouli, Soora & Huang, Hai-Jun, 2020. "Tolerance-based column generation for boundedly rational dynamic activity-travel assignment in large-scale networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    6. Gao, Ziyou & Sun, Huijun & Shan, Lian Long, 2004. "A continuous equilibrium network design model and algorithm for transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 38(3), pages 235-250, March.
    7. Xiao Fu & William Lam, 2014. "A network equilibrium approach for modelling activity-travel pattern scheduling problems in multi-modal transit networks with uncertainty," Transportation, Springer, vol. 41(1), pages 37-55, January.
    8. Zheng, Yu & Zhang, Xiaoning & Liang, Zhe, 2020. "Multimodal subsidy design for network capacity flexibility optimization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 16-35.
    9. Recker, W. W., 2001. "A bridge between travel demand modeling and activity-based travel analysis," Transportation Research Part B: Methodological, Elsevier, vol. 35(5), pages 481-506, June.
    10. John Gliebe & Frank Koppelman, 2005. "Modeling household activity–travel interactions as parallel constrained choices," Transportation, Springer, vol. 32(5), pages 449-471, September.
    11. Liu, Zhiyuan & Wang, Zewen & Cheng, Qixiu & Yin, Ruyang & Wang, Meng, 2021. "Estimation of urban network capacity with second-best constraints for multimodal transport systems," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 276-294.
    12. William Lam & Hai-jun Huang, 2002. "A combined activity/travel choice model for congested road networks with queues," Transportation, Springer, vol. 29(1), pages 5-29, February.
    13. Du, Muqing & Zhou, Jiankun & Chen, Anthony & Tan, Heqing, 2022. "Modeling the capacity of multimodal and intermodal urban transportation networks that incorporate emerging travel modes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    14. Ozbilen, Basar & Wang, Kailai & Akar, Gulsah, 2021. "Revisiting the impacts of virtual mobility on travel behavior: An exploration of daily travel time expenditures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 49-62.
    15. repec:osf:socarx:ap7wh_v1 is not listed on IDEAS
    16. Josefsson, Magnus & Patriksson, Michael, 2007. "Sensitivity analysis of separable traffic equilibrium equilibria with application to bilevel optimization in network design," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 4-31, January.
    17. Yang, Hai, 1995. "Heuristic algorithms for the bilevel origin-destination matrix estimation problem," Transportation Research Part B: Methodological, Elsevier, vol. 29(4), pages 231-242, August.
    18. Vo, Khoa D. & Lam, William H.K. & Chen, Anthony & Shao, Hu, 2020. "A household optimum utility approach for modeling joint activity-travel choices in congested road networks," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 93-125.
    19. Huyen T. K. Le & Andre L. Carrel & Harsh Shah, 2022. "Impacts of online shopping on travel demand: a systematic review," Transport Reviews, Taylor & Francis Journals, vol. 42(3), pages 273-295, May.
    20. Fan, Yinchao & Ding, Jianxun & Liu, Haoxiang & Wang, Yu & Long, Jiancheng, 2022. "Large-scale multimodal transportation network models and algorithms-Part I: The combined mode split and traffic assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    21. Ettema, Dick & Bastin, Fabian & Polak, John & Ashiru, Olu, 2007. "Modelling the joint choice of activity timing and duration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(9), pages 827-841, November.
    22. Mark Bradley & Peter Vovsha, 2005. "A model for joint choice of daily activity pattern types of household members," Transportation, Springer, vol. 32(5), pages 545-571, September.
    23. Ondřej Slach & Vojtěch Bosák & Luděk Krtička & Alexandr Nováček & Petr Rumpel, 2019. "Urban Shrinkage and Sustainability: Assessing the Nexus between Population Density, Urban Structures and Urban Sustainability," Sustainability, MDPI, vol. 11(15), pages 1-22, August.
    24. Liu, Peng & Liao, Feixiong & Huang, Hai-Jun & Timmermans, Harry, 2015. "Dynamic activity-travel assignment in multi-state supernetworks," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 656-671.
    25. Stephen Buckman, 2018. "Resilient cities: overcoming fossil fuel dependence," Transport Reviews, Taylor & Francis Journals, vol. 38(6), pages 815-816, November.
    26. Juan Ramón López Soler & Panayotis Christidis & José Manuel Vassallo, 2021. "Teleworking and Online Shopping: Socio-Economic Factors Affecting Their Impact on Transport Demand," Sustainability, MDPI, vol. 13(13), pages 1-24, June.
    27. Recker, Will W & Duan, J. & Wang, H., 2008. "Development of an estimation procedure for an activity-based travel demand model," University of California Transportation Center, Working Papers qt0rz778v6, University of California Transportation Center.
    28. Xu, Xiangdong & Chen, Anthony & Xu, Guangming & Yang, Chao & Lam, William H.K., 2021. "Enhancing network resilience by adding redundancy to road networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    29. Wang, Yu & Liu, Haoxiang & Fan, Yinchao & Ding, Jianxun & Long, Jiancheng, 2022. "Large-scale multimodal transportation network models and algorithms-Part II: Network capacity and network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    30. Bekhor, Shlomo & Toledo, Tomer, 2005. "Investigating path-based solution algorithms to the stochastic user equilibrium problem," Transportation Research Part B: Methodological, Elsevier, vol. 39(3), pages 279-295, March.
    31. Cho, WooKeol & Chung, Jin-Hyuk & Kim, Jinhee, 2023. "Need-based approach for modeling multiday activity participation patterns and identifying the impact of activity/travel conditions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
    32. Gitakrishnan Ramadurai & Satish Ukkusuri, 2010. "Dynamic User Equilibrium Model for Combined Activity-Travel Choices Using Activity-Travel Supernetwork Representation," Networks and Spatial Economics, Springer, vol. 10(2), pages 273-292, June.
    33. Meng, Q. & Yang, H. & Bell, M. G. H., 2001. "An equivalent continuously differentiable model and a locally convergent algorithm for the continuous network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 35(1), pages 83-105, January.
    34. Allen, Jeff & Farber, Steven, 2020. "Planning transport for social inclusion: An accessibility-activity participation approach," SocArXiv ap7wh, Center for Open Science.
    35. Thorsten Wiechmann & Karina M. Pallagst, 2012. "Urban shrinkage in Germany and the USA: A Comparison of Transformation Patterns and Local Strategies," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 36(2), pages 261-280, March.
    36. Surabhi Gupta & Peter Vovsha, 2013. "A model for work activity schedules with synchronization for multiple-worker households," Transportation, Springer, vol. 40(4), pages 827-845, July.
    37. Yang, Hai, 1997. "Sensitivity analysis for the elastic-demand network equilibrium problem with applications," Transportation Research Part B: Methodological, Elsevier, vol. 31(1), pages 55-70, February.
    38. Charlotte Shade & Peleg Kremer, 2019. "Predicting Land Use Changes in Philadelphia Following Green Infrastructure Policies," Land, MDPI, vol. 8(2), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vo, Khoa D. & Lam, William H.K. & Chen, Anthony & Shao, Hu, 2020. "A household optimum utility approach for modeling joint activity-travel choices in congested road networks," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 93-125.
    2. Wang, Dong & Liao, Feixiong & Gao, Ziyou & Rasouli, Soora & Huang, Hai-Jun, 2020. "Tolerance-based column generation for boundedly rational dynamic activity-travel assignment in large-scale networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    3. Cantelmo, Guido & Viti, Francesco, 2019. "Incorporating activity duration and scheduling utility into equilibrium-based Dynamic Traffic Assignment," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 365-390.
    4. Ye, Jiao & Jiang, Yu & Chen, Jun & Liu, Zhiyuan & Guo, Renzhong, 2021. "Joint optimisation of transfer location and capacity for a capacitated multimodal transport network with elastic demand: a bi-level programming model and paradoxes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    5. Liu, Peng & Liao, Feixiong & Huang, Hai-Jun & Timmermans, Harry, 2015. "Dynamic activity-travel assignment in multi-state supernetworks," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 656-671.
    6. Fu, Xiao & Wu, Youqi & Huang, Di & Wu, Jianjun, 2022. "An activity-based model for transit network design and activity location planning in a three-party game framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    7. Wang, Yu & Liu, Haoxiang & Fan, Yinchao & Ding, Jianxun & Long, Jiancheng, 2022. "Large-scale multimodal transportation network models and algorithms-Part II: Network capacity and network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    8. Xiao Fu & William H. K. Lam, 2018. "Modelling joint activity-travel pattern scheduling problem in multi-modal transit networks," Transportation, Springer, vol. 45(1), pages 23-49, January.
    9. André de Palma & Nathalie Picard & Robin Lindsey, 2024. "Activity and transportation decisions within households," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 16, pages 426-451, Edward Elgar Publishing.
    10. Liu, Peng & Liao, Feixiong & Tian, Qiong & Huang, Hai-Jun & Timmermans, Harry, 2020. "Day-to-day needs-based activity-travel dynamics and equilibria in multi-state supernetworks," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 208-227.
    11. Xie, Chi & Wang, Tong-Gen & Pu, Xiaoting & Karoonsoontawong, Ampol, 2017. "Path-constrained traffic assignment: Modeling and computing network impacts of stochastic range anxiety," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 136-157.
    12. Li, Qing & Liao, Feixiong & Timmermans, Harry J.P. & Huang, Haijun & Zhou, Jing, 2018. "Incorporating free-floating car-sharing into an activity-based dynamic user equilibrium model: A demand-side model," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 102-123.
    13. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C., 2014. "Bottleneck model revisited: An activity-based perspective," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 262-287.
    14. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C., 2017. "Step tolling in an activity-based bottleneck model," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 306-334.
    15. Chow, Joseph Y.J. & Recker, Will W., 2012. "Inverse optimization with endogenous arrival time constraints to calibrate the household activity pattern problem," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 463-479.
    16. Fan, Yinchao & Ding, Jianxun & Long, Jiancheng & Wu, Jianjun, 2024. "Modeling and evaluating the travel behaviour in multimodal networks: A path-based unified equilibrium model and a tailored greedy solution algorithm," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).
    17. Shen, Wei & Wynter, Laura, 2012. "A new one-level convex optimization approach for estimating origin–destination demand," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1535-1555.
    18. Wang, Zhenjie & Zhang, Dezhi & Tavasszy, Lóránt & Fazi, Stefano, 2023. "Integrated multimodal freight service network design and pricing with a competing service integrator and heterogeneous shipper classes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    19. Abdul Rawoof Pinjari & Chandra R. Bhat, 2011. "Activity-based Travel Demand Analysis," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 10, Edward Elgar Publishing.
    20. Chinh Ho & Corinne Mulley, 2015. "Intra-household interactions in transport research: a review," Transport Reviews, Taylor & Francis Journals, vol. 35(1), pages 33-55, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:194:y:2025:i:c:s1366554524005209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.