IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v190y2024ics0965856424003203.html
   My bibliography  Save this article

A dynamic discrete choice modelling approach for forward-looking travel mode choices

Author

Listed:
  • Leong, Joseph
  • Nassir, Neema
  • Mohri, Seyed Sina
  • Sarvi, Majid

Abstract

In this paper, we present a systematic approach based on dynamic discrete choice models (DDCM) to investigate individuals’ forward-looking mode choice behaviours in daily travel tours with multiple destinations. We propose a novel network transformation model that encompasses the entire decision space of all feasible mode combinations for every observed trip/tour in the dataset. By applying the well-established Recursive Logit model structure commonly used in path choice modelling, we address the tour mode choice problem effectively and quantify forward looking considerations in the mode choice process. The proposed model captures the complex considerations individuals take into account when making mode choices. The network transformation incorporates downstream mode limitations into the preceding mode choice options, enabling us to model individuals’ forward-looking behaviour and gain insights into how considerations of future trips such as a shopping in the evening, or school pick-up trip influence previous mode choice decisions earlier in the day. Uncovering and quantifying these hidden forward-looking factors can help modellers better explain the private car usage usually observed for the entire sequences of daily trips, even in presence of competitive alternative modes. The proposed network transformation also enables us to measure the effect of the requirement/preference to return private vehicles (car, motorcycle, and bicycle) home on mode choices in home-bound trips, and subsequently, on the entire daily mode choice decisions. To validate the proposed model, we utilise the VISTA household travel survey data from the Melbourne Metropolitan area in Australia. The model is compared against baseline models, demonstrating its statistical advantages. Additionally, intuitive illustrations using the data showcase the model’s efficacy. From transport planning and policy perspective, tour-based mode choice modelling provides a more comprehensive and precise understanding of travel behaviour by considering the sequence of trips made by an individual. This can help capture the interactions and dependencies between different trips, which trip-based models may overlook. The proposed model is more suitable for analysing the effects of policy interventions like congestion pricing, public transport investments, or new mobility initiatives, as they can better represent the cascading effects of such policies across multiple trips.

Suggested Citation

  • Leong, Joseph & Nassir, Neema & Mohri, Seyed Sina & Sarvi, Majid, 2024. "A dynamic discrete choice modelling approach for forward-looking travel mode choices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:transa:v:190:y:2024:i:c:s0965856424003203
    DOI: 10.1016/j.tra.2024.104272
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856424003203
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2024.104272?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:190:y:2024:i:c:s0965856424003203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.