IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.01595.html
   My bibliography  Save this paper

Constrained Recursive Logit for Route Choice Analysis

Author

Listed:
  • Hung Tran
  • Tien Mai
  • Minh Ha Hoang

Abstract

The recursive logit (RL) model has become a widely used framework for route choice modeling, but it suffers from a key limitation: it assigns nonzero probabilities to all paths in the network, including those that are unrealistic, such as routes exceeding travel time deadlines or violating energy constraints. To address this gap, we propose a novel Constrained Recursive Logit (CRL) model that explicitly incorporates feasibility constraints into the RL framework. CRL retains the main advantages of RL-no path sampling and ease of prediction-but systematically excludes infeasible paths from the universal choice set. The model is inherently non-Markovian; to address this, we develop a tractable estimation approach based on extending the state space, which restores the Markov property and enables estimation using standard value iteration methods. We prove that our estimation method admits a unique solution under positive discrete costs and establish its equivalence to a multinomial logit model defined over restricted universal path choice sets. Empirical experiments on synthetic and real networks demonstrate that CRL improves behavioral realism and estimation stability, particularly in cyclic networks.

Suggested Citation

  • Hung Tran & Tien Mai & Minh Ha Hoang, 2025. "Constrained Recursive Logit for Route Choice Analysis," Papers 2509.01595, arXiv.org.
  • Handle: RePEc:arx:papers:2509.01595
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.01595
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.01595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.