IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.01595.html
   My bibliography  Save this paper

Constrained Recursive Logit for Route Choice Analysis

Author

Listed:
  • Hung Tran
  • Tien Mai
  • Minh Ha Hoang

Abstract

The recursive logit (RL) model has become a widely used framework for route choice modeling, but it suffers from a key limitation: it assigns nonzero probabilities to all paths in the network, including those that are unrealistic, such as routes exceeding travel time deadlines or violating energy constraints. To address this gap, we propose a novel Constrained Recursive Logit (CRL) model that explicitly incorporates feasibility constraints into the RL framework. CRL retains the main advantages of RL-no path sampling and ease of prediction-but systematically excludes infeasible paths from the universal choice set. The model is inherently non-Markovian; to address this, we develop a tractable estimation approach based on extending the state space, which restores the Markov property and enables estimation using standard value iteration methods. We prove that our estimation method admits a unique solution under positive discrete costs and establish its equivalence to a multinomial logit model defined over restricted universal path choice sets. Empirical experiments on synthetic and real networks demonstrate that CRL improves behavioral realism and estimation stability, particularly in cyclic networks.

Suggested Citation

  • Hung Tran & Tien Mai & Minh Ha Hoang, 2025. "Constrained Recursive Logit for Route Choice Analysis," Papers 2509.01595, arXiv.org.
  • Handle: RePEc:arx:papers:2509.01595
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.01595
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fosgerau, Mogens & Frejinger, Emma & Karlstrom, Anders, 2013. "A link based network route choice model with unrestricted choice set," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 70-80.
    2. Mai, Tien & Fosgerau, Mogens & Frejinger, Emma, 2015. "A nested recursive logit model for route choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 100-112.
    3. Yuki Oyama, 2022. "Capturing positive network attributes during the estimation of recursive logit models: A prism-based approach," Papers 2204.01215, arXiv.org, revised Jan 2023.
    4. Oyama, Yuki & Hato, Eiji, 2019. "Prism-based path set restriction for solving Markovian traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 528-546.
    5. Maëlle Zimmermann & Emma Frejinger & Patrice Marcotte, 2021. "A Strategic Markovian Traffic Equilibrium Model for Capacitated Networks," Transportation Science, INFORMS, vol. 55(3), pages 574-591, May.
    6. Tien Mai & Patrick Jaillet, 2020. "A Relation Analysis of Markov Decision Process Frameworks," Papers 2008.07820, arXiv.org.
    7. Tien Mai & Fabian Bastin & Emma Frejinger, 2018. "A decomposition method for estimating recursive logit based route choice models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 253-275, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mai, Tien & Yu, Xinlian & Gao, Song & Frejinger, Emma, 2021. "Routing policy choice prediction in a stochastic network: Recursive model and solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 151(C), pages 42-58.
    2. Yuki Oyama, 2023. "Global path preference and local response: A reward decomposition approach for network path choice analysis in the presence of locally perceived attributes," Papers 2307.08646, arXiv.org.
    3. Oyama, Yuki, 2024. "Global path preference and local response: A reward decomposition approach for network path choice analysis in the presence of visually perceived attributes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    4. Yuki Oyama, 2022. "Capturing positive network attributes during the estimation of recursive logit models: A prism-based approach," Papers 2204.01215, arXiv.org, revised Jan 2023.
    5. Mai, Tien & Bui, The Viet & Nguyen, Quoc Phong & Le, Tho V., 2023. "Estimation of recursive route choice models with incomplete trip observations," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 313-331.
    6. Tran, Hung & Mai, Tien, 2024. "Network-based representations and dynamic discrete choice models for multiple discrete choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 184(C).
    7. Tien Mai & The Viet Bui & Quoc Phong Nguyen & Tho V. Le, 2022. "Estimation of Recursive Route Choice Models with Incomplete Trip Observations," Papers 2204.12992, arXiv.org.
    8. Meyer de Freitas, Lucas & Becker, Henrik & Zimmermann, Maëlle & Axhausen, Kay W., 2019. "Modelling intermodal travel in Switzerland: A recursive logit approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 200-213.
    9. Hung Tran & Tien Mai & Minh Hoang Ha, 2025. "Equilibrium-Constrained Estimation of Recursive Logit Choice Models," Papers 2510.16886, arXiv.org.
    10. Cortés, Cristián E. & Donoso, Pedro & Gutiérrez, Leonel & Herl, Daniel & Muñoz, Diego, 2023. "A recursive stochastic transit equilibrium model estimated using passive data from Santiago, Chile," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    11. Hung Tran & Tien Mai, 2023. "Network-based Representations and Dynamic Discrete Choice Models for Multiple Discrete Choice Analysis," Papers 2306.04606, arXiv.org.
    12. van Oijen, Tim P. & Daamen, Winnie & Hoogendoorn, Serge P., 2020. "Estimation of a recursive link-based logit model and link flows in a sensor equipped network," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 262-281.
    13. Oyama, Yuki & Hato, Eiji, 2019. "Prism-based path set restriction for solving Markovian traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 528-546.
    14. Oyama, Yuki & Hara, Yusuke & Akamatsu, Takashi, 2022. "Markovian traffic equilibrium assignment based on network generalized extreme value model," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 135-159.
    15. Song, Yuchen & Li, Dawei & Liu, Dongjie & Cao, Qi & Chen, Junlan & Ren, Gang & Tang, Xiaoyong, 2022. "Modeling activity-travel behavior under a dynamic discrete choice framework with unobserved heterogeneity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    16. Mogens Fosgerau & Nikolaj Nielsen & Mads Paulsen & Thomas Kj{ae}r Rasmussen & Rui Yao, 2024. "Sensitivity analysis of the perturbed utility stochastic traffic equilibrium," Papers 2409.08347, arXiv.org, revised Nov 2025.
    17. Zhang, Pujun & Lei, Dazhou & Liu, Shan & Jiang, Hai, 2024. "Recursive logit-based meta-inverse reinforcement learning for driver-preferred route planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    18. Leong, Joseph & Nassir, Neema & Mohri, Seyed Sina & Sarvi, Majid, 2024. "A dynamic discrete choice modelling approach for forward-looking travel mode choices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 190(C).
    19. Mogens Fosgerau & Mads Paulsen & Thomas Kj{ae}r Rasmussen, 2021. "A perturbed utility route choice model," Papers 2103.13784, arXiv.org, revised Sep 2021.
    20. Yao, Rui & Bekhor, Shlomo, 2022. "A variational autoencoder approach for choice set generation and implicit perception of alternatives in choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 273-294.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.01595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.