IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-03188847.html
   My bibliography  Save this paper

The Nexus between Climate Negotiations and Low-Carbon Innovation : A Geopolitics of Renewable Energy Patents

Author

Listed:
  • Clément Bonnet

    (IFPEN - IFP Energies nouvelles)

  • Samuel Carcanague

    (IRIS - Institut de Relations Internationales et Stratégiques)

  • Emmanuel Hache

    (IFPEN - IFP Energies nouvelles)

  • Gondia Sokhna Seck

    (IFPEN - IFP Energies nouvelles)

  • Marine Simoën

    (IFPEN - IFP Energies nouvelles)

Abstract

Intellectual property is a central issue in the climate negotiations. On the one hand, it shapes and encourages innovation in low‐carbon technologies. On the other hand, it reduces access to these technologies by giving patent holders market power. We analyze the interactions between climate negotiations and the acquisition of patents on renewable energy technologies. First, we recall the geopolitical nature of intellectual property and explain how it is modified by the particularities of low‐carbon innovation. The second part of this article is devoted to an inventory of the production of inventions in renewable energy technologies (RETs). In particular, we focus on the relative technological advantages of countries and the value of patented inventions. Major changes are observed in the geographical distribution of low‐carbon innovation during the 2000s and they foreshadow a reorganization of the geopolitical balances of innovation in renewable energies

Suggested Citation

  • Clément Bonnet & Samuel Carcanague & Emmanuel Hache & Gondia Sokhna Seck & Marine Simoën, 2018. "The Nexus between Climate Negotiations and Low-Carbon Innovation : A Geopolitics of Renewable Energy Patents," Working Papers hal-03188847, HAL.
  • Handle: RePEc:hal:wpaper:hal-03188847
    Note: View the original document on HAL open archive server: https://ifp.hal.science/hal-03188847
    as

    Download full text from publisher

    File URL: https://ifp.hal.science/hal-03188847/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dewulf, Jo & Blengini, Gian Andrea & Pennington, David & Nuss, Philip & Nassar, Nedal T., 2016. "Criticality on the international scene: Quo vadis?," Resources Policy, Elsevier, vol. 50(C), pages 169-176.
    2. Smulders, Sjak & Tsur, Yacov & Zemel, Amos, 2012. "Announcing climate policy: Can a green paradox arise without scarcity?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 364-376.
    3. G. M.P. Swann, 2009. "The Economics of Innovation," Books, Edward Elgar Publishing, number 13211.
    4. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    5. Marc Baudry & Clément Bonnet, 2016. "Demand pull isntruments and the development of wind power in Europe: A counter-factual analysis," Working Papers 1607, Chaire Economie du climat.
    6. Jacobsson, Staffan & Lauber, Volkmar, 2006. "The politics and policy of energy system transformation--explaining the German diffusion of renewable energy technology," Energy Policy, Elsevier, vol. 34(3), pages 256-276, February.
    7. Matthieu Glachant & Antoine Dechezleprêtre, 2017. "What role for climate negotiations on technology transfer?," Climate Policy, Taylor & Francis Journals, vol. 17(8), pages 962-981, November.
    8. Cherp, Aleh & Jewell, Jessica, 2014. "The concept of energy security: Beyond the four As," Energy Policy, Elsevier, vol. 75(C), pages 415-421.
    9. Chowdhury, Sanjeeda & Sumita, Ushio & Islam, Ashraful & Bedja, Idriss, 2014. "Importance of policy for energy system transformation: Diffusion of PV technology in Japan and Germany," Energy Policy, Elsevier, vol. 68(C), pages 285-293.
    10. Soete, Luc, 1987. "The impact of technological innovation on international trade patterns: The evidence reconsidered," Research Policy, Elsevier, vol. 16(2-4), pages 101-130, August.
    11. Chen, Wei-Ming & Kim, Hana & Yamaguchi, Hideka, 2014. "Renewable energy in eastern Asia: Renewable energy policy review and comparative SWOT analysis for promoting renewable energy in Japan, South Korea, and Taiwan," Energy Policy, Elsevier, vol. 74(C), pages 319-329.
    12. Hans-Werner Sinn, 2008. "Public policies against global warming: a supply side approach," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 15(4), pages 360-394, August.
    13. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2005. "A tale of two market failures: Technology and environmental policy," Ecological Economics, Elsevier, vol. 54(2-3), pages 164-174, August.
    14. Hu, Albert G.Z. & Zhang, Peng & Zhao, Lijing, 2017. "China as number one? Evidence from China's most recent patenting surge," Journal of Development Economics, Elsevier, vol. 124(C), pages 107-119.
    15. Sovacool, Benjamin K. & Mukherjee, Ishani & Drupady, Ira Martina & D’Agostino, Anthony L., 2011. "Evaluating energy security performance from 1990 to 2010 for eighteen countries," Energy, Elsevier, vol. 36(10), pages 5846-5853.
    16. Ching-Yan Wu, 2014. "Comparisons of technological innovation capabilities in the solar photovoltaic industries of Taiwan, China, and Korea," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 429-446, January.
    17. Pollitt, Michael G., 2012. "The role of policy in energy transitions: Lessons from the energy liberalisation era," Energy Policy, Elsevier, vol. 50(C), pages 128-137.
    18. Lanjouw, Jean Olson & Mody, Ashoka, 1996. "Innovation and the international diffusion of environmentally responsive technology," Research Policy, Elsevier, vol. 25(4), pages 549-571, June.
    19. Kobos, Peter H. & Erickson, Jon D. & Drennen, Thomas E., 2006. "Technological learning and renewable energy costs: implications for US renewable energy policy," Energy Policy, Elsevier, vol. 34(13), pages 1645-1658, September.
    20. Di Maria, Corrado & Lange, Ian & van der Werf, Edwin, 2014. "Should we be worried about the green paradox? Announcement effects of the Acid Rain Program," European Economic Review, Elsevier, vol. 69(C), pages 143-162.
    21. Yueh, Linda, 2009. "Patent laws and innovation in China," International Review of Law and Economics, Elsevier, vol. 29(4), pages 304-313, December.
    22. Popp, David, 2005. "Lessons from patents: Using patents to measure technological change in environmental models," Ecological Economics, Elsevier, vol. 54(2-3), pages 209-226, August.
    23. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    24. Harhoff, Dietmar & Scherer, Frederic M. & Vopel, Katrin, 2003. "Citations, family size, opposition and the value of patent rights," Research Policy, Elsevier, vol. 32(8), pages 1343-1363, September.
    25. Sabine Fuss & Josep G. Canadell & Glen P. Peters & Massimo Tavoni & Robbie M. Andrew & Philippe Ciais & Robert B. Jackson & Chris D. Jones & Florian Kraxner & Nebosja Nakicenovic & Corinne Le Quéré & , 2014. "Betting on negative emissions," Nature Climate Change, Nature, vol. 4(10), pages 850-853, October.
    26. Park, Walter G., 2008. "International patent protection: 1960-2005," Research Policy, Elsevier, vol. 37(4), pages 761-766, May.
    27. Glen P. Peters & Robbie M. Andrew & Josep G. Canadell & Sabine Fuss & Robert B. Jackson & Jan Ivar Korsbakken & Corinne Le Quéré & Nebojsa Nakicenovic, 2017. "Key indicators to track current progress and future ambition of the Paris Agreement," Nature Climate Change, Nature, vol. 7(2), pages 118-122, February.
    28. Richard G. Newell & Adam B. Jaffe & Robert N. Stavins, 1999. "The Induced Innovation Hypothesis and Energy-Saving Technological Change," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(3), pages 941-975.
    29. Goe, Michele & Gaustad, Gabrielle, 2014. "Identifying critical materials for photovoltaics in the US: A multi-metric approach," Applied Energy, Elsevier, vol. 123(C), pages 387-396.
    30. Isabell Koske & Isabelle Wanner & Rosamaria Bitetti & Omar Barbiero, 2015. "The 2013 update of the OECD's database on product market regulation: Policy insights for OECD and non-OECD countries," OECD Economics Department Working Papers 1200, OECD Publishing.
    31. Joseph M. Crabb & Daniel K.N. Johnson, 2010. "Fueling Innovation: The Impact of Oil Prices and CAFE Standards on Energy-Efficient Automotive Technology," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 199-216.
    32. Lew, Debra J., 2000. "Alternatives to coal and candles: wind power in China," Energy Policy, Elsevier, vol. 28(4), pages 271-286, April.
    33. Alice Larkin & Jaise Kuriakose & Maria Sharmina & Kevin Anderson, 2018. "What if negative emission technologies fail at scale? Implications of the Paris Agreement for big emitting nations," Climate Policy, Taylor & Francis Journals, vol. 18(6), pages 690-714, July.
    34. Joeri Rogelj & Malte Meinshausen & Reto Knutti, 2012. "Global warming under old and new scenarios using IPCC climate sensitivity range estimates," Nature Climate Change, Nature, vol. 2(4), pages 248-253, April.
    35. Dang, Jianwei & Motohashi, Kazuyuki, 2015. "Patent statistics: A good indicator for innovation in China? Patent subsidy program impacts on patent quality," China Economic Review, Elsevier, vol. 35(C), pages 137-155.
    36. Bolinger, Mark & Wiser, Ryan, 2012. "Understanding wind turbine price trends in the U.S. over the past decade," Energy Policy, Elsevier, vol. 42(C), pages 628-641.
    37. Cantwell, John & Janne, Odile, 1999. "Technological globalisation and innovative centres: the role of corporate technological leadership and locational hierarchy1," Research Policy, Elsevier, vol. 28(2-3), pages 119-144, March.
    38. Steven K. Rose & Richard Richels & Geoffrey Blanford & Thomas Rutherford, 2017. "The Paris Agreement and next steps in limiting global warming," Climatic Change, Springer, vol. 142(1), pages 255-270, May.
    39. Paish, Oliver, 2002. "Small hydro power: technology and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(6), pages 537-556, December.
    40. Gupeng, Zhang & Xiangdong, Chen, 2012. "The value of invention patents in China: Country origin and technology field differences," China Economic Review, Elsevier, vol. 23(2), pages 357-370.
    41. Mariana Mazzucato, 2015. "The Green Entrepreneurial State," SPRU Working Paper Series 2015-28, SPRU - Science Policy Research Unit, University of Sussex Business School.
    42. Edenhofer, Ottmar & Kalkuhl, Matthias, 2011. "When do increasing carbon taxes accelerate global warming? A note on the green paradox," Energy Policy, Elsevier, vol. 39(4), pages 2208-2212, April.
    43. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    44. Klaassen, Ger & Miketa, Asami & Larsen, Katarina & Sundqvist, Thomas, 2005. "The impact of R&D on innovation for wind energy in Denmark, Germany and the United Kingdom," Ecological Economics, Elsevier, vol. 54(2-3), pages 227-240, August.
    45. Nemet, Gregory F., 2009. "Demand-pull, technology-push, and government-led incentives for non-incremental technical change," Research Policy, Elsevier, vol. 38(5), pages 700-709, June.
    46. Chester, Lynne, 2010. "Conceptualising energy security and making explicit its polysemic nature," Energy Policy, Elsevier, vol. 38(2), pages 887-895, February.
    47. Ang, B.W. & Choong, W.L. & Ng, T.S., 2015. "Energy security: Definitions, dimensions and indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1077-1093.
    48. Michielsen, Thomas O., 2014. "Brown backstops versus the green paradox," Journal of Environmental Economics and Management, Elsevier, vol. 68(1), pages 87-110.
    49. William Nordhaus, 2015. "Climate Clubs: Overcoming Free-Riding in International Climate Policy," American Economic Review, American Economic Association, vol. 105(4), pages 1339-1370, April.
    50. Fischer, Timo & Leidinger, Jan, 2014. "Testing patent value indicators on directly observed patent value—An empirical analysis of Ocean Tomo patent auctions," Research Policy, Elsevier, vol. 43(3), pages 519-529.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Su, Chi-Wei & Khan, Khalid & Umar, Muhammad & Zhang, Weike, 2021. "Does renewable energy redefine geopolitical risks?," Energy Policy, Elsevier, vol. 158(C).
    2. Emmanuel Hache & Samuel Carcanague & Clément Bonnet & Gondia Sokhna Seck & Marine Simoën, 2019. "Some geopolitical issues of the energy transition," Working Papers hal-03101697, HAL.
    3. Kai-Hua Wang & Jia-Min Kan & Cui-Feng Jiang & Chi-Wei Su, 2022. "Is Geopolitical Risk Powerful Enough to Affect Carbon Dioxide Emissions? Evidence from China," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    4. Lee, J. & Bazilian, M. & Sovacool, B. & Hund, K. & Jowitt, S.M. & Nguyen, T.P. & Månberger, A. & Kah, M. & Greene, S. & Galeazzi, C. & Awuah-Offei, K. & Moats, M. & Tilton, J. & Kukoda, S., 2020. "Reviewing the material and metal security of low-carbon energy transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emmanuel Hache & Samuel Carcanague & Clément Bonnet & Gondia Sokhna Seck & Marine Simoën, 2019. "Some geopolitical issues of the energy transition," Working Papers hal-03101697, HAL.
    2. Clement Bonnet & Samuel Carcanague & Emmanuel Hache & Gondia Seck & Marine Simoën, 2019. "Vers une Géopolitique de l'énergie plus complexe ? Une analyse prospective tridimensionnelle de la transition énergétique," Working Papers hal-02971706, HAL.
    3. Clement Bonnet, 2020. "Measuring Knowledge with Patent Data: an Application to Low Carbon Energy Technologies," Working Papers hal-02971680, HAL.
    4. Clément Bonnet, 2016. "Measuring Knowledge with Patent Data: an Application to Low Carbon Energy Technologies," EconomiX Working Papers 2016-37, University of Paris Nanterre, EconomiX.
    5. Clément Bonnet, 2017. "Measuring Inventive Performance with Patent Data: an Application to Low Carbon Energy Technologies," Working Papers 1709, Chaire Economie du climat.
    6. Antoine Dechezleprêtre & Matthieu Glachant, 2014. "Does Foreign Environmental Policy Influence Domestic Innovation? Evidence from the Wind Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(3), pages 391-413, July.
    7. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    8. Gianluca ORSATTI, 2019. "Public R&D and green knowledge diffusion:\r\nEvidence from patent citation data," Cahiers du GREThA (2007-2019) 2019-17, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    9. Felix Groba & Barbara Breitschopf, 2013. "Impact of Renewable Energy Policy and Use on Innovation: A Literature Review," Discussion Papers of DIW Berlin 1318, DIW Berlin, German Institute for Economic Research.
    10. Costantini, Valeria & Crespi, Francesco & Palma, Alessandro, 2017. "Characterizing the policy mix and its impact on eco-innovation: A patent analysis of energy-efficient technologies," Research Policy, Elsevier, vol. 46(4), pages 799-819.
    11. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    12. Saidi Magaly Flores S nchez & Miguel Alejandro Flores Segovia & Luis Carlos Rodr guez L pez, 2020. "Impact of Public Policies on the Technological Innovation in the Renewable Energy Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 139-159.
    13. Kyunam Kim & Eunnyeong Heo & Yeonbae Kim, 2017. "Dynamic Policy Impacts on a Technological-Change System of Renewable Energy: An Empirical Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(2), pages 205-236, February.
    14. Orsatti, Gianluca & Pezzoni, Michele & Quatraro, Francesco, 2017. "Where Do Green Technologies Come From? Inventor Teams’ Recombinant Capabilities and the Creation of New Knowledge," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201711, University of Turin.
    15. Patricia Laurens & Christian Le Bas & Stéphane Lhuillery & Antoine Schoen, 2017. "The determinants of cleaner energy innovations of the world’s largest firms: the impact of firm learning and knowledge capital," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 26(4), pages 311-333, May.
    16. Jingbo Cui & Zhenxuan Wang & Haishan Yu, 2022. "Can International Climate Cooperation Induce Knowledge Spillover to Developing Countries? Evidence from CDM," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 82(4), pages 923-951, August.
    17. Lu, Yunguo & Zhang, Lin, 2022. "National mitigation policy and the competitiveness of Chinese firms," Energy Economics, Elsevier, vol. 109(C).
    18. Cameron Hepburn & Jacquelyn Pless & David Popp, 2018. "Policy Brief—Encouraging Innovation that Protects Environmental Systems: Five Policy Proposals," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 154-169.
    19. Johannes Pfeiffer, 2017. "Fossil Resources and Climate Change – The Green Paradox and Resource Market Power Revisited in General Equilibrium," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 77.
    20. Jin, Wei & Zhang, ZhongXiang, 2014. "Explaining the Slow Pace of Energy Technological Innovation Why Market Conditions Matter?," Energy: Resources and Markets 165758, Fondazione Eni Enrico Mattei (FEEM).

    More about this item

    Keywords

    Patent data; energy transition; renewable energy technology; innovation; international relations;
    All these keywords.

    JEL classification:

    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O38 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-03188847. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.