IDEAS home Printed from https://ideas.repec.org/p/fgv/eesptd/346.html
   My bibliography  Save this paper

Forecasting Brazilian inflation by its aggregate and disaggregated data: a test of predictive power by forecast horizon

Author

Listed:
  • Carlos, Thiago Carlomagno
  • Marçal, Emerson Fernandes

Abstract

This work aims to compare the forecast efficiency of different types of methodologies applied to Brazilian Consumer inflation (IPCA). We will compare forecasting models using disaggregated and aggregated data over twelve months ahead. The disaggregated models were estimated by SARIMA and will have different levels of disaggregation. Aggregated models will be estimated by time series techniques such as SARIMA, state-space structural models and Markov-switching. The forecasting accuracy comparison will be made by the selection model procedure known as Model Confidence Set and by Diebold-Mariano procedure. We were able to find evidence of forecast accuracy gains in models using more disaggregated data

Suggested Citation

  • Carlos, Thiago Carlomagno & Marçal, Emerson Fernandes, 2013. "Forecasting Brazilian inflation by its aggregate and disaggregated data: a test of predictive power by forecast horizon," Textos para discussão 346, FGV/EESP - Escola de Economia de São Paulo, Getulio Vargas Foundation (Brazil).
  • Handle: RePEc:fgv:eesptd:346
    as

    Download full text from publisher

    File URL: http://bibliotecadigital.fgv.br/dspace/bitstream/10438/11338/1/TD%20346%20-%20CEMAP%2001%20-%20Thiago%20C.%20Carlos%20-%20Emerson%20Fernandes%20Mar%c3%a7al.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kohn, Robert, 1982. "When is an aggregate of a time series efficiently forecast by its past?," Journal of Econometrics, Elsevier, vol. 18(3), pages 337-349, April.
    2. David F. Hendry & Kirstin Hubrich, 2011. "Combining Disaggregate Forecasts or Combining Disaggregate Information to Forecast an Aggregate," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(2), pages 216-227, April.
    3. Adolfo Sachsida & Marcio Ribeiro & Claudio Hamilton dos Santos, 2009. "A Curva de Phillips e a Experiência Brasileira," Discussion Papers 1429, Instituto de Pesquisa Econômica Aplicada - IPEA.
    4. Joel Bogdanski & Alexandre Antonio Tombini & Sergio R. Da C. Werlang, 2001. "Implementing Inflation Targeting in Brazil," Money Affairs, Centro de Estudios Monetarios Latinoamericanos, vol. 0(1), pages 1-23, January-J.
    5. Inoue, Atsushi & Kilian, Lutz, 2006. "On the selection of forecasting models," Journal of Econometrics, Elsevier, vol. 130(2), pages 273-306, February.
    6. Ard Reijer & Peter Vlaar, 2006. "Forecasting Inflation: An Art as Well as a Science!," De Economist, Springer, vol. 154(1), pages 19-40, March.
    7. Martin Evans & Paul Wachtel, 1993. "Inflation regimes and the sources of inflation uncertainty," Proceedings, Federal Reserve Bank of Cleveland, pages 475-520.
    8. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    9. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    10. Palm, Franz C & Nijman, Theo E, 1984. "Missing Observations in the Dynamic Regression Model," Econometrica, Econometric Society, vol. 52(6), pages 1415-1435, November.
    11. Tiao, G. C. & Guttman, Irwin, 1980. "Forecasting contemporal aggregates of multiple time series," Journal of Econometrics, Elsevier, vol. 12(2), pages 219-230, February.
    12. Nijman, Theo E & Palm, Franz C, 1990. "Predictive Accuracy Gain from Disaggregate Sampling in ARIMA Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(4), pages 405-415, October.
    13. Bidarkota, Prasad V, 2001. "Alternative Regime Switching Models for Forecasting Inflation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(1), pages 21-35, January.
    14. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    15. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    16. Yock Y. Chong & David F. Hendry, 1986. "Econometric Evaluation of Linear Macro-Economic Models," Review of Economic Studies, Oxford University Press, vol. 53(4), pages 671-690.
    17. Rose, David E., 1977. "Forecasting aggregates of independent Arima processes," Journal of Econometrics, Elsevier, vol. 5(3), pages 323-345, May.
    18. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    19. repec:sbe:breart:v:27:y:2007:i:1:a:1575 is not listed on IDEAS
    20. James H. Stock & Mark W. Watson, 1998. "Diffusion Indexes," NBER Working Papers 6702, National Bureau of Economic Research, Inc.
    21. Ben S. Bernanke, 2007. "Inflation expectations and inflation forecasting," Speech 306, Board of Governors of the Federal Reserve System (U.S.).
    22. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    23. Duarte, Claudia & Rua, Antonio, 2007. "Forecasting inflation through a bottom-up approach: How bottom is bottom?," Economic Modelling, Elsevier, vol. 24(6), pages 941-953, November.
    24. Kim, Chang-Jin, 1993. "Unobserved-Component Time Series Models with Markov-Switching Heteroscedasticity: Changes in Regime and the Link between Inflation Rates and Inflation Uncertainty," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(3), pages 341-349, July.
    25. Arruda, Elano Ferreira & Ferreira, Roberto Tatiwa & Castelar, Ivan, 2011. "Modelos lineares e não lineares da curva de Phillips para previsão da taxa de Inflação no Brasil," Revista Brasileira de Economia - RBE, FGV/EPGE - Escola Brasileira de Economia e Finanças, Getulio Vargas Foundation (Brazil), vol. 65(3), September.
    26. repec:fip:fedgsq:y:2007:i:jul10 is not listed on IDEAS
    27. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    28. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, Oxford University Press, vol. 120(1), pages 387-422.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fgv:eesptd:346. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Núcleo de Computação da FGV/EPGE). General contact details of provider: http://edirc.repec.org/data/eegvfbr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.