IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/2192.html
   My bibliography  Save this paper

Boosting the Hodrick-Prescott Filter

Author

Abstract

The Hodrick-Prescott (HP) filter is one of the most widely used econometric methods in applied macroeconomic research. The technique is nonparametric and seeks to decompose a time series into a trend and a cyclical component unaided by economic theory or prior trend specification. Like all nonparametric methods, the HP filter depends critically on a tuning parameter that controls the degree of smoothing. Yet in contrast to modern nonparametric methods and applied work with these procedures, empirical practice with the HP filter almost universally relies on standard settings for the tuning parameter that have been suggested largely by experimentation with macroeconomic data and heuristic reasoning about the form of economic cycles and trends. As recent research has shown, standard settings may not be adequate in removing trends, particularly stochastic trends, in economic data. This paper proposes an easy-to-implement practical procedure of iterating the HP smoother that is intended to make the filter a smarter smoothing device for trend estimation and trend elimination. We call this iterated HP technique the boosted HP filter in view of its connection to L_2-boosting in machine learning. The paper develops limit theory to show that the boosted HP filter asymptotically recovers trend mechanisms that involve unit root processes, deterministic polynomial drifts, and polynomial drifts with structural breaks ' the most common trends that appear in macroeconomic data and current modeling methodology. In doing so, the boosted filter provides a new mechanism for consistently estimating multiple structural breaks. A stopping criterion is used to automate the iterative HP algorithm, making it a data-determined method that is ready for modern data-rich environments in economic research. The methodology is illustrated using three real data examples that highlight the differences between simple HP filtering, the data-determined boosted filter, and an alternative autoregressive approach. These examples show that the boosted HP filter is helpful in analyzing a large collection of heterogeneous macroeconomic time series that manifest various degrees of persistence, trend behavior, and volatility.

Suggested Citation

  • Peter C.B. Phillips & Zhentao Shi, 2019. "Boosting the Hodrick-Prescott Filter," Cowles Foundation Discussion Papers 2192, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:2192
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d21/d2192.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    2. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments," American Economic Review, American Economic Association, vol. 105(5), pages 486-490, May.
    3. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    4. Luo, Ye & Spindler, Martin, 2017. "L2-Boosting for Economic Applications," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168194, Verein für Socialpolitik / German Economic Association.
    5. Ye Luo & Martin Spindler, 2017. "L2-Boosting for Economic Applications," American Economic Review, American Economic Association, vol. 107(5), pages 270-273, May.
    6. Caner, Mehmet & Kock, Anders Bredahl, 2018. "Asymptotically honest confidence regions for high dimensional parameters by the desparsified conservative Lasso," Journal of Econometrics, Elsevier, vol. 203(1), pages 143-168.
    7. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    8. Phillips, P.C.B., 1986. "Understanding spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 33(3), pages 311-340, December.
    9. Damian Kozbur, 2017. "Testing-Based Forward Model Selection," American Economic Review, American Economic Association, vol. 107(5), pages 266-269, May.
    10. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "Inference on Treatment Effects after Selection among High-Dimensional Controlsâ€," Review of Economic Studies, Oxford University Press, vol. 81(2), pages 608-650.
    11. Lawrence J. Christiano & Terry J. Fitzgerald, 2003. "The Band Pass Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(2), pages 435-465, May.
    12. Morten O. Ravn & Harald Uhlig, 2002. "On adjusting the Hodrick-Prescott filter for the frequency of observations," The Review of Economics and Statistics, MIT Press, vol. 84(2), pages 371-375.
    13. S. Borağan Aruoba & Francis X. Diebold & M. Ayhan Kose & Marco E. Terrones, 2011. "Globalization, the Business Cycle, and Macroeconomic Monitoring," NBER International Seminar on Macroeconomics, University of Chicago Press, vol. 7(1), pages 245-286.
    14. Serena Ng, 2014. "Viewpoint: Boosting Recessions," Canadian Journal of Economics, Canadian Economics Association, vol. 47(1), pages 1-34, February.
    15. Peter C. B. Phillips & Sainan Jin, 2021. "Business Cycles, Trend Elimination, And The Hp Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 469-520, May.
    16. Mark Aguiar & Gita Gopinath, 2007. "Emerging Market Business Cycles: The Cycle Is the Trend," Journal of Political Economy, University of Chicago Press, vol. 115, pages 69-102.
    17. S. Boragan Aruoba & Francis X. Diebold, 2010. "Real-Time Macroeconomic Monitoring: Real Activity, Inflation, and Interactions," American Economic Review, American Economic Association, vol. 100(2), pages 20-24, May.
    18. Marianne Baxter & Robert G. King, 1999. "Measuring Business Cycles: Approximate Band-Pass Filters For Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 575-593, November.
    19. James D. Hamilton, 2018. "Why You Should Never Use the Hodrick-Prescott Filter," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 831-843, December.
    20. King, Robert G. & Rebelo, Sergio T., 1993. "Low frequency filtering and real business cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 17(1-2), pages 207-231.
    21. Jushan Bai & Serena Ng, 2009. "Boosting diffusion indices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 607-629.
    22. Christina D. Romer, 1999. "Changes in Business Cycles: Evidence and Explanations," Journal of Economic Perspectives, American Economic Association, vol. 13(2), pages 23-44, Spring.
    23. Diebold, Francis X & Kilian, Lutz, 2000. "Unit-Root Tests Are Useful for Selecting Forecasting Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 265-273, July.
    24. Shi, Zhentao, 2016. "Econometric estimation with high-dimensional moment equalities," Journal of Econometrics, Elsevier, vol. 195(1), pages 104-119.
    25. Baek, Yae In & Cho, Jin Seo & Phillips, Peter C.B., 2015. "Testing linearity using power transforms of regressors," Journal of Econometrics, Elsevier, vol. 187(1), pages 376-384.
    26. Whitney K. Newey & Fushing Hsieh & James M. Robins, 2004. "Twicing Kernels and a Small Bias Property of Semiparametric Estimators," Econometrica, Econometric Society, vol. 72(3), pages 947-962, May.
    27. Granger, C. W. J. & Newbold, P., 1974. "Spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 2(2), pages 111-120, July.
    28. Keisuke Hirano & Jonathan H. Wright, 2017. "Forecasting With Model Uncertainty: Representations and Risk Reduction," Econometrica, Econometric Society, vol. 85, pages 617-643, March.
    29. Gerhard Tutz & Harald Binder, 2006. "Generalized Additive Modeling with Implicit Variable Selection by Likelihood-Based Boosting," Biometrics, The International Biometric Society, vol. 62(4), pages 961-971, December.
    30. Adriana Cornea-Madeira, 2017. "The Explicit Formula for the Hodrick-Prescott Filter in a Finite Sample," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 314-318, May.
    31. Cogley, Timothy & Nason, James M., 1995. "Effects of the Hodrick-Prescott filter on trend and difference stationary time series Implications for business cycle research," Journal of Economic Dynamics and Control, Elsevier, vol. 19(1-2), pages 253-278.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amor, Thouraya Hadj & Nouira, Ridha & Rault, Christophe & Sova, Anamaria Diana, 2023. "Real exchange rate misalignments and economic growth in Tunisia: New evidence from a threshold analysis of asymmetric adjustments," The Quarterly Review of Economics and Finance, Elsevier, vol. 88(C), pages 215-227.
    2. Peter C. B. Phillips & Zhentao Shi, 2021. "Boosting: Why You Can Use The Hp Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 521-570, May.
    3. Alain Hecq & Elisa Voisin, 2023. "Predicting Crashes in Oil Prices During The Covid-19 Pandemic with Mixed Causal-Noncausal Models," Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications, volume 45, pages 209-233, Emerald Group Publishing Limited.
    4. Peter C. B. Phillips & Xiaohu Wang & Yonghui Zhang, 2019. "HAR Testing for Spurious Regression in Trend," Econometrics, MDPI, vol. 7(4), pages 1-28, December.
    5. Baffes, John & Kabundi, Alain, 2023. "Commodity price shocks: Order within chaos?," Resources Policy, Elsevier, vol. 83(C).
    6. Shovon Sengupta & Tanujit Chakraborty & Sunny Kumar Singh, 2023. "Forecasting CPI inflation under economic policy and geo-political uncertainties," Papers 2401.00249, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter C. B. Phillips & Zhentao Shi, 2021. "Boosting: Why You Can Use The Hp Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 521-570, May.
    2. Ziwei Mei & Zhentao Shi & Peter C. B. Phillips, 2022. "The boosted HP filter is more general than you might think," Cowles Foundation Discussion Papers 2348, Cowles Foundation for Research in Economics, Yale University.
    3. Viv B. Hall & Peter Thomson, 2021. "Does Hamilton’s OLS Regression Provide a “better alternative” to the Hodrick-Prescott Filter? A New Zealand Business Cycle Perspective," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 151-183, November.
    4. Baffes, John & Kabundi, Alain, 2023. "Commodity price shocks: Order within chaos?," Resources Policy, Elsevier, vol. 83(C).
    5. Wolf, Elias & Mokinski, Frieder & Schüler, Yves, 2020. "On adjusting the one-sided Hodrick-Prescott filter," Discussion Papers 11/2020, Deutsche Bundesbank.
    6. David Staines, 2023. "Stochastic Equilibrium the Lucas Critique and Keynesian Economics," Papers 2312.16214, arXiv.org.
    7. Robert J. Hodrick, 2020. "An Exploration of Trend-Cycle Decomposition Methodologies in Simulated Data," NBER Working Papers 26750, National Bureau of Economic Research, Inc.
    8. Neslihan Sakarya & Robert M. de Jong, 2022. "The spectral analysis of the Hodrick–Prescott filter," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 479-489, May.
    9. Carnazza, Giovanni & Liberati, Paolo & Sacchi, Agnese, 2020. "The cyclically-adjusted primary balance: A novel approach for the euro area," Journal of Policy Modeling, Elsevier, vol. 42(5), pages 1123-1145.
    10. Jylhä, Petri & Lof, Matthijs, 2022. "Mind the Basel gap," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    11. Peter C. B. Phillips & Sainan Jin, 2021. "Business Cycles, Trend Elimination, And The Hp Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 469-520, May.
    12. Galimberti, Jaqueson K. & Moura, Marcelo L., 2016. "Improving the reliability of real-time output gap estimates using survey forecasts," International Journal of Forecasting, Elsevier, vol. 32(2), pages 358-373.
    13. Viv B. Hall & Peter Thomson, 2022. "A boosted HP filter for business cycle analysis:evidence from New Zealand's small open economy," CAMA Working Papers 2022-45, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    14. Maravall, A. & del Rio, A., 2007. "Temporal aggregation, systematic sampling, and the Hodrick-Prescott filter," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 975-998, October.
    15. Hall, Viv B & Thomson, Peter, 2022. "A boosted HP filter for business cycle analysis: evidence from New Zealand’s small open economy," Working Paper Series 9473, Victoria University of Wellington, School of Economics and Finance.
    16. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021. "Economic Predictions With Big Data: The Illusion of Sparsity," Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
    17. Melina Dritsaki & Chaido Dritsaki, 2022. "Comparison of HP Filter and the Hamilton’s Regression," Mathematics, MDPI, vol. 10(8), pages 1-18, April.
    18. Mark W. French, 2001. "Estimating changes in trend growth of total factor productivity: Kalman and H-P filters versus a Markov-switching framework," Finance and Economics Discussion Series 2001-44, Board of Governors of the Federal Reserve System (U.S.).
    19. Alfred A. Haug & William G. Dewald, 2012. "Money, Output, And Inflation In The Longer Term: Major Industrial Countries, 1880–2001," Economic Inquiry, Western Economic Association International, vol. 50(3), pages 773-787, July.
    20. Sunder, Marco & Woitek, Ulrich, 2005. "Boom, bust, and the human body: Further evidence on the relationship between height and business cycles," Economics & Human Biology, Elsevier, vol. 3(3), pages 450-466, December.

    More about this item

    Keywords

    Boosting; Cycles; Empirical macroeconomics; Hodrick-Prescott filter; Machine learning; Nonstationary time series; Trends; Unit root processes;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • E20 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - General (includes Measurement and Data)

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:2192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.