IDEAS home Printed from https://ideas.repec.org/a/wly/emetrp/v85y2017ip617-643.html
   My bibliography  Save this article

Forecasting With Model Uncertainty: Representations and Risk Reduction

Author

Listed:
  • Keisuke Hirano
  • Jonathan H. Wright

Abstract

We consider forecasting with uncertainty about the choice of predictor variables. The researcher wants to select a model, estimate the parameters, and use the parameter estimates for forecasting. We investigate the distributional properties of a number of different schemes for model choice and parameter estimation, including: in‐sample model selection using the Akaike information criterion; out‐of‐sample model selection; and splitting the data into subsamples for model selection and parameter estimation. Using a weak‐predictor local asymptotic scheme, we provide a representation result that facilitates comparison of the distributional properties of the procedures and their associated forecast risks. This representation isolates the source of inefficiency in some of these procedures. We develop a simulation procedure that improves the accuracy of the out‐of‐sample and split‐sample methods uniformly over the local parameter space. We also examine how bootstrap aggregation (bagging) affects the local asymptotic risk of the estimators and their associated forecasts. Numerically, we find that for many values of the local parameter, the out‐of‐sample and split‐sample schemes perform poorly if implemented in the conventional way. But they perform well, if implemented in conjunction with our risk‐reduction method or bagging.

Suggested Citation

  • Keisuke Hirano & Jonathan H. Wright, 2017. "Forecasting With Model Uncertainty: Representations and Risk Reduction," Econometrica, Econometric Society, vol. 85, pages 617-643, March.
  • Handle: RePEc:wly:emetrp:v:85:y:2017:i::p:617-643
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gourieroux, Christian & Jasiak, Joann, 2010. "Inference for Noisy Long Run Component Process," MPRA Paper 98987, University Library of Munich, Germany.
    2. Peter C. B. Phillips & Zhentao Shi, 2021. "Boosting: Why You Can Use The Hp Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 521-570, May.
    3. Chen, Yi-Ting & Liu, Chu-An, 2023. "Model averaging for asymptotically optimal combined forecasts," Journal of Econometrics, Elsevier, vol. 235(2), pages 592-607.
    4. Siemsen, Thomas & Vilsmeier, Johannes, 2017. "A stress test framework for the German residential mortgage market: Methodology and application," Discussion Papers 37/2017, Deutsche Bundesbank.
    5. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    6. Keisuke Hirano & Jack R. Porter, 2023. "Asymptotic Representations for Sequential Decisions, Adaptive Experiments, and Batched Bandits," Papers 2302.03117, arXiv.org.
    7. Boot, Tom & Nibbering, Didier, 2019. "Forecasting using random subspace methods," Journal of Econometrics, Elsevier, vol. 209(2), pages 391-406.
    8. Peter C.B. Phillips & Zhentao Shi, 2019. "Boosting the Hodrick-Prescott Filter," Cowles Foundation Discussion Papers 2192, Cowles Foundation for Research in Economics, Yale University.
    9. Wright, Jonathan H., 2019. "Some observations on forecasting and policy," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1186-1192.
    10. Lee, Ji Hyung & Shi, Zhentao & Gao, Zhan, 2022. "On LASSO for predictive regression," Journal of Econometrics, Elsevier, vol. 229(2), pages 322-349.
    11. Berge, Travis J., 2018. "Understanding survey-based inflation expectations," International Journal of Forecasting, Elsevier, vol. 34(4), pages 788-801.
    12. Norman R. Swanson & Weiqi Xiong & Xiye Yang, 2020. "Predicting interest rates using shrinkage methods, real‐time diffusion indexes, and model combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 587-613, August.
    13. Yinchu Zhu, 2021. "Phase transition of the monotonicity assumption in learning local average treatment effects," Papers 2103.13369, arXiv.org.
    14. Benjamin Garcia & Arsenios Skaperdas, 2017. "Inferring the Shadow Rate from Real Activity," Finance and Economics Discussion Series 2017-106, Board of Governors of the Federal Reserve System (U.S.).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:emetrp:v:85:y:2017:i::p:617-643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.