Author
Listed:
- Ivan Itai Bernal Lara
(Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Av. Luis Enrique Erro s/n, Ciudad de México 07738, Mexico)
- Roberto Jair Lorenzo Diaz
(Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Av. Luis Enrique Erro s/n, Ciudad de México 07738, Mexico)
- María de los Ángeles Sánchez Galván
(Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Av. Luis Enrique Erro s/n, Ciudad de México 07738, Mexico)
- Jaime Robles García
(Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Av. Luis Enrique Erro s/n, Ciudad de México 07738, Mexico)
- Mohamed Badaoui
(Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Av. Luis Enrique Erro s/n, Ciudad de México 07738, Mexico)
- David Romero Romero
(Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Av. Luis Enrique Erro s/n, Ciudad de México 07738, Mexico)
- Rodolfo Alfonso Moreno Flores
(Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Av. Luis Enrique Erro s/n, Ciudad de México 07738, Mexico)
Abstract
This paper focuses on electricity demand forecasting and its uncertainty representation using a hybrid machine learning (ML) model in the eastern control area of southeastern Mexico. In this case, different sources of uncertainty are integrated by applying the Bootstrap method, which adds the characteristics of stochastic noise, resulting in a hybrid probabilistic and ML model in the form of a time series. The proposed methodology addresses a function density probability, which is the generalized of extreme values obtained from the errors of the ML model; however, it is adaptable and independent and simulates the variability that may arise due to unforeseen events. Results indicate that for a five-day forecast using only demand data, the proposed model achieves a Mean Absolute Percentage Error (MAPE) of 4.358%; however, incorporating temperature increases the MAPE to 5.123% due to growing uncertainty. In contrast, a day-ahead forecast, including temperature, improves accuracy, reducing MAPE to 1.644%. The stochastic noise component enhances probabilistic modeling, yielding a MAPE of 3.042% with and 2.073% without temperature in five-day forecasts. Therefore, the proposed model proves useful for regions with high demand variability, such as southeastern Mexico, while maintaining accuracy over longer time horizons.
Suggested Citation
Ivan Itai Bernal Lara & Roberto Jair Lorenzo Diaz & María de los Ángeles Sánchez Galván & Jaime Robles García & Mohamed Badaoui & David Romero Romero & Rodolfo Alfonso Moreno Flores, 2025.
"Probabilistic Demand Forecasting in the Southeast Region of the Mexican Power System Using Machine Learning Methods,"
Forecasting, MDPI, vol. 7(3), pages 1-16, July.
Handle:
RePEc:gam:jforec:v:7:y:2025:i:3:p:39-:d:1705034
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:7:y:2025:i:3:p:39-:d:1705034. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.