IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i15p3988-d1710244.html
   My bibliography  Save this article

Smart Grid Strategies for Tackling the Duck Curve: A Qualitative Assessment of Digitalization, Battery Energy Storage, and Managed Rebound Effects Benefits

Author

Listed:
  • Joseph Nyangon

    (Energy Exemplar, Salt Lake City, UT 84111, USA
    The Payne Institute for Public Policy, Colorado School of Mines, Golden, CO 80401, USA)

Abstract

Modern utilities face unprecedented pressures as trends in digital transformation and democratized energy choice empower consumers to engage in peak shaving, flexible load management, and adopt grid automation and intelligence solutions. A powerful confluence of architectural, technological, and socio-economic forces is transforming the U.S. electricity market, triggering significant changes in electricity production, transmission, and consumption. Utilities are embracing digital twins and repurposed Utility 2.0 concepts—distributed energy resources, microgrids, innovative electricity market designs, real-time automated monitoring, smart meters, machine learning, artificial intelligence, and advanced data and predictive analytics—to foster operational flexibility and market efficiency. This analysis qualitatively evaluates how digitalization, Battery Energy Storage Systems (BESSs), and adaptive strategies to mitigate rebound effects collectively advance smart duck curve management. By leveraging digital platforms for real-time monitoring and predictive analytics, utilities can optimize energy flows and make data-driven decisions. BESS technologies capture surplus renewable energy during off-peak periods and discharge it when demand spikes, thereby smoothing grid fluctuations. This review explores the benefits of targeted digital transformation, BESSs, and managed rebound effects in mitigating the duck curve problem, ensuring that energy efficiency gains translate into actual savings. Furthermore, this integrated approach not only reduces energy wastage and lowers operational costs but also enhances grid resilience, establishing a robust framework for sustainable energy management in an evolving market landscape.

Suggested Citation

  • Joseph Nyangon, 2025. "Smart Grid Strategies for Tackling the Duck Curve: A Qualitative Assessment of Digitalization, Battery Energy Storage, and Managed Rebound Effects Benefits," Energies, MDPI, vol. 18(15), pages 1-38, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:3988-:d:1710244
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/15/3988/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/15/3988/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Noam Bergman & Timothy J. Foxon, 2023. "Drivers and effects of digitalization on energy demand in low-carbon scenarios," Climate Policy, Taylor & Francis Journals, vol. 23(3), pages 329-342, March.
    2. Seongwoo Lee & Joonho Seon & Byungsun Hwang & Soohyun Kim & Youngghyu Sun & Jinyoung Kim, 2024. "Recent Trends and Issues of Energy Management Systems Using Machine Learning," Energies, MDPI, vol. 17(3), pages 1-24, January.
    3. Nisitha Padmawansa & Kosala Gunawardane & Samaneh Madanian & Amanullah Maung Than Oo, 2023. "Battery Energy Storage Capacity Estimation for Microgrids Using Digital Twin Concept," Energies, MDPI, vol. 16(12), pages 1-18, June.
    4. Jimmy Gallegos & Paul Arévalo & Christian Montaleza & Francisco Jurado, 2024. "Sustainable Electrification—Advances and Challenges in Electrical-Distribution Networks: A Review," Sustainability, MDPI, vol. 16(2), pages 1-33, January.
    5. Belaïd, Fateh & Mikayilov, Jeyhun I., 2024. "Closing the Efficiency Gap: Insights into curbing the direct rebound effect of residential electricity consumption in Saudi Arabia," Energy Economics, Elsevier, vol. 135(C).
    6. Stern, David I., 2020. "How large is the economy-wide rebound effect?," Energy Policy, Elsevier, vol. 147(C).
    7. Joy Dalmacio Billanes & Bo Nørregaard Jørgensen & Zheng Ma, 2025. "A Framework for Resilient Community Microgrids: Review of Operational Strategies and Performance Metrics," Energies, MDPI, vol. 18(2), pages 1-39, January.
    8. Paul Arévalo & Francisco Jurado, 2024. "Impact of Artificial Intelligence on the Planning and Operation of Distributed Energy Systems in Smart Grids," Energies, MDPI, vol. 17(17), pages 1-22, September.
    9. David Font Vivanco & Serenella Sala & Will McDowall, 2018. "Roadmap to Rebound: How to Address Rebound Effects from Resource Efficiency Policy," Sustainability, MDPI, vol. 10(6), pages 1-17, June.
    10. Kenneth Gillingham & David Rapson & Gernot Wagner, 2016. "The Rebound Effect and Energy Efficiency Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 68-88.
    11. Arraño-Vargas, Felipe & Jiang, Shan & Bennett, Bruce & Konstantinou, Georgios, 2023. "Mitigation of power system oscillations in weak grids with battery energy storage systems: A real-world case study," Energy, Elsevier, vol. 283(C).
    12. Roberto Dias Filho & Amanda C. M. Monteiro & Tatiane Costa & Andrea Vasconcelos & Ana Clara Rode & Manoel Marinho, 2023. "Strategic Guidelines for Battery Energy Storage System Deployment: Regulatory Framework, Incentives, and Market Planning," Energies, MDPI, vol. 16(21), pages 1-22, October.
    13. Sorrell, Steve, 2009. "Jevons' Paradox revisited: The evidence for backfire from improved energy efficiency," Energy Policy, Elsevier, vol. 37(4), pages 1456-1469, April.
    14. Joseph Nyangon & Ruth Akintunde, 2024. "Principal component analysis of day‐ahead electricity price forecasting in CAISO and its implications for highly integrated renewable energy markets," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(1), January.
    15. Freire-González, Jaume & Puig-Ventosa, Ignasi, 2015. "Energy Efficiency Policies and the Jevons Paradox," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 5(1), pages 69-79.
    16. Kong, Li & Mu, Xianzhong & Hu, Guangwen & Tu, Chuang, 2023. "Will energy efficiency improvements reduce energy consumption? Perspective of rebound effect and evidence from beijing," Energy, Elsevier, vol. 263(PA).
    17. Shabani, Masoume & Wallin, Fredrik & Dahlquist, Erik & Yan, Jinyue, 2022. "Techno-economic assessment of battery storage integrated into a grid-connected and solar-powered residential building under different battery ageing models," Applied Energy, Elsevier, vol. 318(C).
    18. Zhao Song & Christoph M. Hackl & Abhinav Anand & Andre Thommessen & Jonas Petzschmann & Omar Kamel & Robert Braunbehrens & Anton Kaifel & Christian Roos & Stefan Hauptmann, 2023. "Digital Twins for the Future Power System: An Overview and a Future Perspective," Sustainability, MDPI, vol. 15(6), pages 1-29, March.
    19. Cansino, José M. & Ordóñez, Manuel & Prieto, Manuela, 2022. "Decomposition and measurement of the rebound effect: The case of energy efficiency improvements in Spain," Applied Energy, Elsevier, vol. 306(PA).
    20. João Flores & Miguel Cavique & Júlia Seixas, 2022. "Energy Sustainability—Rebounds Revisited Using Axiomatic Design," Sustainability, MDPI, vol. 14(11), pages 1-15, May.
    21. Peng, Hua-Rong & Qin, Xiong-Feng, 2024. "Digitalization as a trigger for a rebound effect of electricity use," Energy, Elsevier, vol. 300(C).
    22. Mahmoud Kiasari & Mahdi Ghaffari & Hamed H. Aly, 2024. "A Comprehensive Review of the Current Status of Smart Grid Technologies for Renewable Energies Integration and Future Trends: The Role of Machine Learning and Energy Storage Systems," Energies, MDPI, vol. 17(16), pages 1-38, August.
    23. Rancilio, Giuliano & Bovera, Filippo & Spiller, Matteo & Merlo, Marco & Delfanti, Maurizio, 2024. "BESS and the ancillary services markets: A symbiosis yet? Impact of market design on performance," Applied Energy, Elsevier, vol. 375(C).
    24. Turki Alsuwian & Aiman Shahid Butt & Arslan Ahmed Amin, 2022. "Smart Grid Cyber Security Enhancement: Challenges and Solutions—A Review," Sustainability, MDPI, vol. 14(21), pages 1-21, October.
    25. Mukovhe Ratshitanga & Ayokunle Ayeleso & Senthil Krishnamurthy & Garrett Rose & Anges Akim Aminou Moussavou & Marco Adonis, 2024. "Battery Storage Use in the Value Chain of Power Systems," Energies, MDPI, vol. 17(4), pages 1-40, February.
    26. Severin Borenstein, 2014. "A Microeconomic Framework for Evaluating Energy Efficiency Rebound and Some Implications," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    27. Semeraro, Concetta & Caggiano, Mariateresa & Olabi, Abdul-Ghani & Dassisti, Michele, 2022. "Battery monitoring and prognostics optimization techniques: Challenges and opportunities," Energy, Elsevier, vol. 255(C).
    28. Md Ruhul Amin & Michael Negnevitsky & Evan Franklin & Kazi Saiful Alam & Seyed Behzad Naderi, 2021. "Application of Battery Energy Storage Systems for Primary Frequency Control in Power Systems with High Renewable Energy Penetration," Energies, MDPI, vol. 14(5), pages 1-22, March.
    29. Joseph Nyangon & John Byrne, 2023. "Estimating the impacts of natural gas power generation growth on solar electricity development: PJM's evolving resource mix and ramping capability," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(1), January.
    30. Hany Habbak & Mohamed Mahmoud & Khaled Metwally & Mostafa M. Fouda & Mohamed I. Ibrahem, 2023. "Load Forecasting Techniques and Their Applications in Smart Grids," Energies, MDPI, vol. 16(3), pages 1-33, February.
    31. Martins, Jason & Miles, John, 2021. "A techno-economic assessment of battery business models in the UK electricity market," Energy Policy, Elsevier, vol. 148(PB).
    32. Stermieri, L. & Kober, T. & McKenna, R. & Schmidt, T.J. & Panos, E., 2024. "The role of digital social practices and technologies in the Swiss energy transition towards net-zero carbon dioxide emissions in 2050," Energy Policy, Elsevier, vol. 193(C).
    33. Debnath, Kumar Biswajit & Jenkins, David P. & Patidar, Sandhya & Peacock, Andrew D., 2024. "Remote work might unlock solar PV's potential of cracking the ‘Duck Curve’," Applied Energy, Elsevier, vol. 367(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Chenchen & Lin, Boqiang, 2025. "The impact of digital economy on energy rebound effect in China: A stochastic energy demand frontier approach," Energy Policy, Elsevier, vol. 196(C).
    2. Rocha, Felipe Freitas da & Almeida, Edmar Luiz Fagundes de, 2021. "A general equilibrium model of macroeconomic rebound effect: A broader view," Energy Economics, Elsevier, vol. 98(C).
    3. David Font Vivanco & Jaume Freire‐González & Ray Galvin & Tilman Santarius & Hans Jakob Walnum & Tamar Makov & Serenella Sala, 2022. "Rebound effect and sustainability science: A review," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1543-1563, August.
    4. Tufan Özsoy, 2024. "The “energy rebound effect” within the framework of environmental sustainability," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(2), March.
    5. Blum, Bianca & Hübner, Julian & Milde, Adrian & Neumärker, Karl Justus Bernhard, 2018. "On the evidence of rebound effects in the lighting sector: Implications for promoting LED lighting," The Constitutional Economics Network Working Papers 05-2018, University of Freiburg, Department of Economic Policy and Constitutional Economic Theory.
    6. Belaïd, Fateh & Mikayilov, Jeyhun I., 2024. "Closing the Efficiency Gap: Insights into curbing the direct rebound effect of residential electricity consumption in Saudi Arabia," Energy Economics, Elsevier, vol. 135(C).
    7. De Borger, Bruno & Mulalic, Ismir & Rouwendal, Jan, 2016. "Measuring the rebound effect with micro data: A first difference approach," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 1-17.
    8. Aldona Standar & Agnieszka Kozera & Łukasz Satoła, 2021. "The Importance of Local Investments Co-Financed by the European Union in the Field of Renewable Energy Sources in Rural Areas of Poland," Energies, MDPI, vol. 14(2), pages 1-23, January.
    9. Genc, Talat S., 2024. "Energy Transition and the role of new natural gas turbines for power production: The case of GT11N2 M generators," Energy Economics, Elsevier, vol. 131(C).
    10. Berner, Anne & Bruns, Stephan & Moneta, Alessio & Stern, David I., 2022. "Do energy efficiency improvements reduce energy use? Empirical evidence on the economy-wide rebound effect in Europe and the United States," Energy Economics, Elsevier, vol. 110(C).
    11. Minoru Morita & Kazuyuki Iwata & Toshi H. Arimura, 2022. "The rebound effect in air conditioner usage: an empirical analysis of Japanese individuals’ behaviors," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(1), pages 99-117, January.
    12. Blackburn, Christopher J. & Moreno-Cruz, Juan, 2021. "Energy efficiency in general equilibrium with input–output linkages," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    13. Ahmann, Lara & Banning, Maximilian & Lutz, Christian, 2022. "Modeling rebound effects and counteracting policies for German industries," Ecological Economics, Elsevier, vol. 197(C).
    14. Stern, David I., 2020. "How large is the economy-wide rebound effect?," Energy Policy, Elsevier, vol. 147(C).
    15. Anelí Bongers, 2021. "Energy Efficiency, Emission Energy, and the Environment," Energy RESEARCH LETTERS, Asia-Pacific Applied Economics Association, vol. 1(1), pages 1-4.
    16. Benjamin Volland, 2016. "Efficiency in Domestic Space Heating: An Estimation of the Direct Rebound Effect for Domestic Heating in the U.S," IRENE Working Papers 16-01, IRENE Institute of Economic Research.
    17. Mier, Mathias & Weissbart, Christoph, 2020. "Power markets in transition: Decarbonization, energy efficiency, and short-term demand response," Energy Economics, Elsevier, vol. 86(C).
    18. Sylvain Weber & Mehdi Farsi, 2014. "Travel distance, fuel efficiency, and vehicle weight: An estimation of the rebound effect using individual data in Switzerland," IRENE Working Papers 14-03, IRENE Institute of Economic Research.
    19. Diederik Dicou & Saskia van Ewijk & Jan Kakes & Martijn Regelink & Guido Schotten, 2016. "Time for Transition - an exploratory study of the transition to a carbon-neutral economy," DNB Occasional Studies 1402, Netherlands Central Bank, Research Department.
    20. Guzzo, D. & Walrave, B. & Videira, N. & Oliveira, I.C. & Pigosso, D.C.A., 2024. "Towards a systemic view on rebound effects: Modelling the feedback loops of rebound mechanisms," Ecological Economics, Elsevier, vol. 217(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:3988-:d:1710244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.