IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i11p6737-d828793.html
   My bibliography  Save this article

Energy Sustainability—Rebounds Revisited Using Axiomatic Design

Author

Listed:
  • João Flores

    (NOVA School of Science and Technology, Campus de Caparica, NOVA University Lisbon, 2829-516 Caparica, Portugal)

  • Miguel Cavique

    (Naval Academy, Base Naval de Lisboa, Alfeite, 2810-001 Almada, Portugal
    UNIDEMI, NOVA School of Science and Technology, Campus de Caparica, NOVA University Lisbon, 2829-516 Caparica, Portugal)

  • Júlia Seixas

    (CENSE, NOVA School of Science and Technology, Campus de Caparica, NOVA University Lisbon, 2829-516 Caparica, Portugal)

Abstract

Energy Sustainability has been addressed through advancing technology efficiency, which may increase the impact of the use of natural resources. However, the increase in efficiency makes services cheaper, which causes a rebound effect, direct or indirect, on energy consumption and materials. Moreover, the popular concept of recycling seems insufficient to reduce the use of critical raw materials to provide energy services. From the perspective of the Earth’s limited resources, the sustainability problem needs a design approach to tackle the rebound effect from efficiency. This work aims to create a theoretical holistic review regarding energy use linked to technology efficiency, to understand how rebound effects may be prevented. In this work, the Axiomatic Design (AD) theory creates the framework that defines the Energy Sustainability functions and identifies the couplings that create the rebounds. According to AD, cycles occur on coupled designs, classified as poor designs. Decoupling the design clarifies two possible and complementary policies to achieve sustainability goals regarding the use of resources. The first is the circular economy, with constraints on energy and raw materials. The second is the massive use of local renewable energies. Plausible solutions come from mandating efficiency and taxation, dematerializing the economy, and reducing, reusing, remanufacturing, and recycling materials from products and systems. These solutions impact economic, environmental, and societal behaviors. The novelty of this approach is the definition of a system model for Energy Sustainability in the frame of AD, while tackling the rebound effect from technological efficiency.

Suggested Citation

  • João Flores & Miguel Cavique & Júlia Seixas, 2022. "Energy Sustainability—Rebounds Revisited Using Axiomatic Design," Sustainability, MDPI, vol. 14(11), pages 1-15, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6737-:d:828793
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/11/6737/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/11/6737/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nicholas Crafts, 2004. "Steam as a general purpose technology: A growth accounting perspective," Economic Journal, Royal Economic Society, vol. 114(495), pages 338-351, April.
    2. Chaudry, Modassar & Jayasuriya, Lahiru & Jenkins, Nick, 2021. "Modelling of integrated local energy systems: Low-carbon energy supply strategies for the Oxford-Cambridge arc region," Energy Policy, Elsevier, vol. 157(C).
    3. Soudagar, Manzoore Elahi M. & Mujtaba, M.A. & Safaei, Mohammad Reza & Afzal, Asif & V, Dhana Raju & Ahmed, Waqar & Banapurmath, N.R. & Hossain, Nazia & Bashir, Shahid & Badruddin, Irfan Anjum & Goodar, 2021. "Effect of Sr@ZnO nanoparticles and Ricinus communis biodiesel-diesel fuel blends on modified CRDI diesel engine characteristics," Energy, Elsevier, vol. 215(PA).
    4. Brookes, Leonard, 2004. "Energy efficiency fallacies--a postscript," Energy Policy, Elsevier, vol. 32(8), pages 945-947, June.
    5. Patricia Fortes & Sofia Simões & Júlia Seixas & Denise Van Regemorter & Francisco Ferreira, 2013. "Top-down and bottom-up modelling to support low-carbon scenarios: climate policy implications," Climate Policy, Taylor & Francis Journals, vol. 13(3), pages 285-304, May.
    6. Jeffrey B. Dahmus, 2014. "Can Efficiency Improvements Reduce Resource Consumption?," Journal of Industrial Ecology, Yale University, vol. 18(6), pages 883-897, December.
    7. Brookes, Leonard, 2000. "Energy efficiency fallacies revisited," Energy Policy, Elsevier, vol. 28(6-7), pages 355-366, June.
    8. Haas, Reinhard & Biermayr, Peter, 2000. "The rebound effect for space heating Empirical evidence from Austria," Energy Policy, Elsevier, vol. 28(6-7), pages 403-410, June.
    9. Zell-Ziegler, Carina & Thema, Johannes & Best, Benjamin & Wiese, Frauke & Lage, Jonas & Schmidt, Annika & Toulouse, Edouard & Stagl, Sigrid, 2021. "Enough? The role of sufficiency in European energy and climate plans," Energy Policy, Elsevier, vol. 157(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Constantin Anghelache & Mădălina Gabriela Anghel & Ștefan Virgil Iacob & Ion Pârțachi & Irina Gabriela Rădulescu & Alina Gabriela Brezoi, 2023. "Analysis of the Situation of Renewable and Non-Renewable Energy Consumption in the European Union," Energies, MDPI, vol. 16(3), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouyang, Xiaoling & Gao, Beiying & Du, Kerui & Du, Gang, 2018. "Industrial sectors' energy rebound effect: An empirical study of Yangtze River Delta urban agglomeration," Energy, Elsevier, vol. 145(C), pages 408-416.
    2. Lin, Boqiang & Chen, Yufang & Zhang, Guoliang, 2017. "Technological progress and rebound effect in China's nonferrous metals industry: An empirical study," Energy Policy, Elsevier, vol. 109(C), pages 520-529.
    3. Coccia, Mario, 2010. "Energy metrics for driving competitiveness of countries: Energy weakness magnitude, GDP per barrel and barrels per capita," Energy Policy, Elsevier, vol. 38(3), pages 1330-1339, March.
    4. Sorrell, Steve, 2009. "Jevons' Paradox revisited: The evidence for backfire from improved energy efficiency," Energy Policy, Elsevier, vol. 37(4), pages 1456-1469, April.
    5. Figge, Frank & Thorpe, Andrea Stevenson, 2019. "The symbiotic rebound effect in the circular economy," Ecological Economics, Elsevier, vol. 163(C), pages 61-69.
    6. de Haan, Peter & Mueller, Michel G. & Peters, Anja, 2006. "Does the hybrid Toyota Prius lead to rebound effects? Analysis of size and number of cars previously owned by Swiss Prius buyers," Ecological Economics, Elsevier, vol. 58(3), pages 592-605, June.
    7. Khademvatani, Asgar & Gordon, Daniel V., 2013. "A marginal measure of energy efficiency: The shadow value," Energy Economics, Elsevier, vol. 38(C), pages 153-159.
    8. Estrella Trincado & Antonio Sánchez-Bayón & José María Vindel, 2021. "The European Union Green Deal: Clean Energy Wellbeing Opportunities and the Risk of the Jevons Paradox," Energies, MDPI, vol. 14(14), pages 1-23, July.
    9. Sang-Hyeon Jin, 2020. "Fuel poverty and rebound effect in South Korea: An estimation for home appliances using the modified regression model," Energy & Environment, , vol. 31(7), pages 1147-1166, November.
    10. Saunders, Harry D., 2014. "Toward a neoclassical theory of sustainable consumption: Eight golden age propositions," Ecological Economics, Elsevier, vol. 105(C), pages 220-232.
    11. Michael Huesemann & Joyce Huesemann, 2008. "Will progress in science and technology avert or accelerate global collapse? A critical analysis and policy recommendations," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 10(6), pages 787-825, December.
    12. Gabbasa, Mohamed & Sopian, Kamaruzzaman & Yaakob, Zahira & Faraji Zonooz, M.Reza & Fudholi, Ahmad & Asim, Nilofar, 2013. "Review of the energy supply status for sustainable development in the Organization of Islamic Conference," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 18-28.
    13. Winebrake, James J. & Green, Erin H. & Comer, Bryan & Corbett, James J. & Froman, Sarah, 2012. "Estimating the direct rebound effect for on-road freight transportation," Energy Policy, Elsevier, vol. 48(C), pages 252-259.
    14. Hache, Emmanuel & Leboullenger, Déborah & Mignon, Valérie, 2017. "Beyond average energy consumption in the French residential housing market: A household classification approach," Energy Policy, Elsevier, vol. 107(C), pages 82-95.
    15. Svante Prado, 2014. "Yeast or mushrooms? Productivity patterns across Swedish manufacturing industries, 1869–1912," Economic History Review, Economic History Society, vol. 67(2), pages 382-408, May.
    16. Muhammad Usman & Haris Hussain & Fahid Riaz & Muneeb Irshad & Rehmat Bashir & Muhammad Haris Shah & Adeel Ahmad Zafar & Usman Bashir & M. A. Kalam & M. A. Mujtaba & Manzoore Elahi M. Soudagar, 2021. "Artificial Neural Network Led Optimization of Oxyhydrogen Hybridized Diesel Operated Engine," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
    17. Yaman, Hayri & Yesilyurt, Murat Kadir & Uslu, Samet, 2022. "Simultaneous optimization of multiple engine parameters of a 1-heptanol / gasoline fuel blends operated a port-fuel injection spark-ignition engine using response surface methodology approach," Energy, Elsevier, vol. 238(PC).
    18. Dai, Hancheng & Mischke, Peggy & Xie, Xuxuan & Xie, Yang & Masui, Toshihiko, 2016. "Closing the gap? Top-down versus bottom-up projections of China’s regional energy use and CO2 emissions," Applied Energy, Elsevier, vol. 162(C), pages 1355-1373.
    19. K. M. V. Ravi Teja & P. Issac Prasad & K. Vijaya Kumar Reddy & N. R. Banapurmath & Manzoore Elahi M. Soudagar & T. M. Yunus Khan & Irfan Anjum Badruddin, 2021. "Influence of Combustion Chamber Shapes and Nozzle Geometry on Performance, Emission, and Combustion Characteristics of CRDI Engine Powered with Biodiesel Blends," Sustainability, MDPI, vol. 13(17), pages 1-19, August.
    20. Gilbert Cette & Yusuf Kocoglu & Jacques Mairesse, 2009. "Productivity Growth and Levels in France, Japan, the United Kingdom and the United States in the Twentieth Century," NBER Working Papers 15577, National Bureau of Economic Research, Inc.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6737-:d:828793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.