IDEAS home Printed from https://ideas.repec.org/a/bla/ehsrev/v67y2014i2p382-408.html
   My bibliography  Save this article

Yeast or mushrooms? Productivity patterns across Swedish manufacturing industries, 1869–1912

Author

Listed:
  • Svante Prado

Abstract

type="main"> This article applies Harberger's yeast versus mushrooms dichotomy to Swedish manufacturing industries in the four decades prior to the First World War. The evidence, broken down to cover five sub-periods, points to a growth process resembling that of mushrooms more than that of yeast. In addition, it is argued that a yeast-like (even) pattern of productivity growth rates invites one to search for a general purpose technology at work, whereas mushroom-like progress leads one to dismiss the idea that a small number of technologies spilled over to a large number of manufacturing processes. The era under investigation coincides with the peak of the use of steam power and the infancy of electricity. The evidence makes it unlikely that steam in Sweden was a general purpose technology with the potential to affect the progress in productivity across industries in a yeast-like fashion. The rampant spread of electricity may have contributed to the yeast-like pattern in the last sub-period preceding the First World War.

Suggested Citation

  • Svante Prado, 2014. "Yeast or mushrooms? Productivity patterns across Swedish manufacturing industries, 1869–1912," Economic History Review, Economic History Society, vol. 67(2), pages 382-408, May.
  • Handle: RePEc:bla:ehsrev:v:67:y:2014:i:2:p:382-408
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/1468-0289.12018
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David, Paul A, 1990. "The Dynamo and the Computer: An Historical Perspective on the Modern Productivity Paradox," American Economic Review, American Economic Association, vol. 80(2), pages 355-361, May.
    2. Edquist, Harald & Henrekson, Magnus, 2004. "Technological Breakthroughs and Productivity Growth," SSE/EFI Working Paper Series in Economics and Finance 0562, Stockholm School of Economics, revised 23 Jan 2006.
    3. Crafts, Nicholas, 2004. "Productivity Growth in the Industrial Revolution: A New Growth Accounting Perspective," The Journal of Economic History, Cambridge University Press, vol. 64(2), pages 521-535, June.
    4. Harald Edquist, 2010. "Does hedonic price indexing change our interpretation of economic history? Evidence from Swedish electrification," Economic History Review, Economic History Society, vol. 63(2), pages 500-523, May.
    5. Nathan Rosenberg & Manuel Trajtenberg, 2009. "A General-Purpose Technology at Work: The Corliss Steam Engine in the Late-Nineteenth-Century United States," World Scientific Book Chapters, in: Nathan Rosenberg (ed.), Studies On Science And The Innovation Process Selected Works of Nathan Rosenberg, chapter 6, pages 97-135, World Scientific Publishing Co. Pte. Ltd..
    6. Devine, Warren D., 1983. "From Shafts to Wires: Historical Perspective on Electrification," The Journal of Economic History, Cambridge University Press, vol. 43(2), pages 347-372, June.
    7. Nicholas Crafts, 2004. "Steam as a general purpose technology: A growth accounting perspective," Economic Journal, Royal Economic Society, vol. 114(495), pages 338-351, April.
    8. Solomon Fabricant, 1942. "Employment in Manufacturing, 1899-1939: An Analysis of Its Relation to the Volume of Production," NBER Books, National Bureau of Economic Research, Inc, number fabr42-1, September.
    9. Petra Moser & Tom Nicholas, 2004. "Was Electricity a General Purpose Technology? Evidence from Historical Patent Citations," American Economic Review, American Economic Association, vol. 94(2), pages 388-394, May.
    10. Atack, Jeremy & Bateman, Fred & Margo, Robert A., 2008. "Steam power, establishment size, and labor productivity growth in nineteenth century American manufacturing," Explorations in Economic History, Elsevier, vol. 45(2), pages 185-198, April.
    11. Kevin J. Stiroh, 2002. "Information Technology and the U.S. Productivity Revival: What Do the Industry Data Say?," American Economic Review, American Economic Association, vol. 92(5), pages 1559-1576, December.
    12. Bohlin, Jan, 2003. "Swedish historical national accounts: The fifth generation," European Review of Economic History, Cambridge University Press, vol. 7(1), pages 73-97, April.
    13. Atack, Jeremy, 1979. "Fact in fiction? The relative costs of steam and water power: a simulation approach," Explorations in Economic History, Elsevier, vol. 16(4), pages 409-437, October.
    14. Harberger, Arnold C, 1998. "A Vision of the Growth Process," American Economic Review, American Economic Association, vol. 88(1), pages 1-32, March.
    15. Robert Inklaar & Marcel P. Timmer, 2007. "Of Yeast and Mushrooms: Patterns of Industry‐Level Productivity Growth," German Economic Review, Verein für Socialpolitik, vol. 8(2), pages 174-187, May.
    16. Richard B. Du Boff, 1967. "The Introduction of Electric Power in American Manufacturing," Economic History Review, Economic History Society, vol. 20(3), pages 509-518, December.
    17. Robert J. Gordon, 1999. "U.S. Economic Growth since 1870: One Big Wave?," American Economic Review, American Economic Association, vol. 89(2), pages 123-128, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edquist, Harald & Henrekson, Magnus, 2004. "Technological Breakthroughs and Productivity Growth," SSE/EFI Working Paper Series in Economics and Finance 0562, Stockholm School of Economics, revised 23 Jan 2006.
    2. Atack, Jeremy & Bateman, Fred & Margo, Robert A., 2008. "Steam power, establishment size, and labor productivity growth in nineteenth century American manufacturing," Explorations in Economic History, Elsevier, vol. 45(2), pages 185-198, April.
    3. Jalava, Jukka & Pohjola, Matti, 2008. "The roles of electricity and ICT in economic growth: Case Finland," Explorations in Economic History, Elsevier, vol. 45(3), pages 270-287, July.
    4. Shih-tse Lo & Dhanoos Sutthiphisal, 2008. "Crossover Inventions And Knowledge Diffusion Of General Purpose Technologies? Evidence From The Electrical Technology," NBER Working Papers 14043, National Bureau of Economic Research, Inc.
    5. Edquist, Harald, 2005. "Do hedonic price indexes change history? The case of electrification," SSE/EFI Working Paper Series in Economics and Finance 586, Stockholm School of Economics, revised 29 Apr 2005.
    6. Clifford Bekar & Kenneth Carlaw & Richard Lipsey, 2018. "General purpose technologies in theory, application and controversy: a review," Journal of Evolutionary Economics, Springer, vol. 28(5), pages 1005-1033, December.
    7. van Ark, Bart & Smits, Jan Pieter, 2005. "Technology Regimes and Productivity Growth in Europe and the United States: A Comparative and Historical Perspective," Institute of European Studies, Working Paper Series qt1td1h23k, Institute of European Studies, UC Berkeley.
    8. Bresnahan, Timothy, 2010. "General Purpose Technologies," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 761-791, Elsevier.
    9. Harald Edquist, 2010. "Does hedonic price indexing change our interpretation of economic history? Evidence from Swedish electrification," Economic History Review, Economic History Society, vol. 63(2), pages 500-523, May.
    10. Paul A. David, 2005. "Productivity growth prospects and the new economy in historical perspective," Economic History 0502005, University Library of Munich, Germany.
    11. Jeffrey Ding & Allan Dafoe, 2021. "Engines of Power: Electricity, AI, and General-Purpose Military Transformations," Papers 2106.04338, arXiv.org.
    12. Coccia, Mario, 2015. "General sources of general purpose technologies in complex societies: Theory of global leadership-driven innovation, warfare and human development," Technology in Society, Elsevier, vol. 42(C), pages 199-226.
    13. Crafts, Nicholas, 2004. "Productivity Growth in the Industrial Revolution: A New Growth Accounting Perspective," The Journal of Economic History, Cambridge University Press, vol. 64(2), pages 521-535, June.
    14. Edquist, Harald & Henrekson, Magnus, 2017. "Do R&D and ICT affect total factor productivity growth differently?," Telecommunications Policy, Elsevier, vol. 41(2), pages 106-119.
    15. Carolina Castaldi & Alessandro Nuvolari, 2004. "Technological Revolutions and Economic Growth: The “Age of Steam” Reconsidered," LEM Papers Series 2004/11, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    16. Kim, Sukkoo, 2005. "Industrialization and urbanization: Did the steam engine contribute to the growth of cities in the United States?," Explorations in Economic History, Elsevier, vol. 42(4), pages 586-598, October.
    17. Mauro Napoletano & Andrea Roventini & Sandro Sapio, 2004. "Yeast vs. Mushrooms: A Note on Harberger's "A Vision of the Growth Process"," LEM Papers Series 2004/03, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    18. Raiteri, Emilio, 2018. "A time to nourish? Evaluating the impact of public procurement on technological generality through patent data," Research Policy, Elsevier, vol. 47(5), pages 936-952.
    19. Paul David & Gavin Wright, 1999. "Early Twentieth Century Productivity Growth Dynamics: An Inquiry into the Economic History of Our Ignorance," Oxford Economic and Social History Working Papers _033, University of Oxford, Department of Economics.
    20. Oulton, Nicholas, 2012. "Long term implications of the ICT revolution: Applying the lessons of growth theory and growth accounting," Economic Modelling, Elsevier, vol. 29(5), pages 1722-1736.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:ehsrev:v:67:y:2014:i:2:p:382-408. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/ehsukea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/ehsukea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.