IDEAS home Printed from https://ideas.repec.org/a/eee/respol/v47y2018i5p936-952.html
   My bibliography  Save this article

A time to nourish? Evaluating the impact of public procurement on technological generality through patent data

Author

Listed:
  • Raiteri, Emilio

Abstract

Innovative public procurement is increasingly considered as a form of public support for private innovation activities by both innovation scholars and policymakers. Economic historians have suggested an even more fundamental role of public procurement in setting the pace of technological change, reporting how defense-related procurement has had a major impact on the emergence and diffusion of many general purpose technologies developed in the United States in the 20th century. In this paper, I suggest that procurement might represent one of the most important elements in creating the right soil to ‘cultivate’ a technology that may have the potential to reach high levels of pervasiveness. To test this hypothesis, I make use of patent data and patent citations. I design a quasi-experiment to compare the changes in the level of generality level over time, between a group of treated and a group of control patents. A patent is assigned to the treatment group if it receives a citation from a patent related to public procurement. Results suggest a positive and significant impact of innovative public procurement on the generality of a patent.

Suggested Citation

  • Raiteri, Emilio, 2018. "A time to nourish? Evaluating the impact of public procurement on technological generality through patent data," Research Policy, Elsevier, vol. 47(5), pages 936-952.
  • Handle: RePEc:eee:respol:v:47:y:2018:i:5:p:936-952
    DOI: 10.1016/j.respol.2018.02.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0048733318300490
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.respol.2018.02.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lanjouw, Jean O & Schankerman, Mark, 2001. "Characteristics of Patent Litigation: A Window on Competition," RAND Journal of Economics, The RAND Corporation, vol. 32(1), pages 129-151, Spring.
    2. Bresnahan, Timothy F. & Trajtenberg, M., 1995. "General purpose technologies 'Engines of growth'?," Journal of Econometrics, Elsevier, vol. 65(1), pages 83-108, January.
    3. Jacob Schmookler, 1962. "Changes in Industry and in the State of Knowledge as Determinants of Industrial Invention," NBER Chapters, in: The Rate and Direction of Inventive Activity: Economic and Social Factors, pages 195-232, National Bureau of Economic Research, Inc.
    4. David, Paul A, 1990. "The Dynamo and the Computer: An Historical Perspective on the Modern Productivity Paradox," American Economic Review, American Economic Association, vol. 80(2), pages 355-361, May.
    5. Joshua Lerner, 1994. "The Importance of Patent Scope: An Empirical Analysis," RAND Journal of Economics, The RAND Corporation, vol. 25(2), pages 319-333, Summer.
    6. Mokyr, Joel, 1990. "Punctuated Equilibria and Technological Progress," American Economic Review, American Economic Association, vol. 80(2), pages 350-354, May.
    7. David C. Mowery, 2011. "Federal Policy and the Development of Semiconductors, Computer Hardware, and Computer Software: A Policy Model for Climate Change R&D?," NBER Chapters, in: Accelerating Energy Innovation: Insights from Multiple Sectors, pages 159-188, National Bureau of Economic Research, Inc.
    8. Geroski, P. A., 2000. "Models of technology diffusion," Research Policy, Elsevier, vol. 29(4-5), pages 603-625, April.
    9. Marco Guerzoni, 2010. "The impact of market size and users' sophistication on innovation: the patterns of demand," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 19(1), pages 113-126.
    10. Roberto Fontana & Marco Guerzoni, 2008. "Incentives and uncertainty: an empirical analysis of the impact of demand on innovation," Cambridge Journal of Economics, Oxford University Press, vol. 32(6), pages 927-946, November.
    11. Cowan, Robin & Foray, Dominique, 1995. "Quandaries in the economics of dual technologies and spillovers from military to civilian research and development," Research Policy, Elsevier, vol. 24(6), pages 851-868, November.
    12. Bronwyn H. Hall & Adam B. Jaffe & Manuel Trajtenberg, 2001. "The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools," NBER Working Papers 8498, National Bureau of Economic Research, Inc.
    13. Nathan Rosenberg & Manuel Trajtenberg, 2009. "A General-Purpose Technology at Work: The Corliss Steam Engine in the Late-Nineteenth-Century United States," World Scientific Book Chapters, in: Nathan Rosenberg (ed.), Studies On Science And The Innovation Process Selected Works of Nathan Rosenberg, chapter 6, pages 97-135, World Scientific Publishing Co. Pte. Ltd..
    14. Max Rolfstam, 2009. "Public procurement as an innovation policy tool: The role of institutions," Science and Public Policy, Oxford University Press, vol. 36(5), pages 349-360, June.
    15. Jean O. Lanjouw & Mark Schankerman, 1999. "The Quality of Ideas: Measuring Innovation with Multiple Indicators," NBER Working Papers 7345, National Bureau of Economic Research, Inc.
    16. Alberto Abadie, 2005. "Semiparametric Difference-in-Differences Estimators," Review of Economic Studies, Oxford University Press, vol. 72(1), pages 1-19.
    17. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    18. Lichtenberg, Frank R, 1988. "The Private R&D Investment Response to Federal Design and Technical Competitions," American Economic Review, American Economic Association, vol. 78(3), pages 550-559, June.
    19. Petra Moser & Tom Nicholas, 2004. "Was Electricity a General Purpose Technology? Evidence from Historical Patent Citations," American Economic Review, American Economic Association, vol. 94(2), pages 388-394, May.
    20. Jeffrey B. Liebman & Neale Mahoney, 2013. "Do Expiring Budgets Lead to Wasteful Year-End Spending? Evidence from Federal Procurement," NBER Working Papers 19481, National Bureau of Economic Research, Inc.
    21. Edler, Jakob & Georghiou, Luke, 2007. "Public procurement and innovation--Resurrecting the demand side," Research Policy, Elsevier, vol. 36(7), pages 949-963, September.
    22. Bronwyn H. Hall & Adam Jaffe & Manuel Trajtenberg, 2005. "Market Value and Patent Citations," RAND Journal of Economics, The RAND Corporation, vol. 36(1), pages 16-38, Spring.
    23. Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1993. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," The Quarterly Journal of Economics, Oxford University Press, vol. 108(3), pages 577-598.
    24. Rebecca Henderson & Adam B. Jaffe & Manuel Trajtenberg, 1998. "Universities As A Source Of Commercial Technology: A Detailed Analysis Of University Patenting, 1965-1988," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 119-127, February.
    25. Manuel Trajtenberg & Rebecca Henderson & Adam Jaffe, 1997. "University Versus Corporate Patents: A Window On The Basicness Of Invention," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 5(1), pages 19-50.
    26. Foray, Dominique, 1997. "The dynamic implications of increasing returns: Technological change and path dependent inefficiency," International Journal of Industrial Organization, Elsevier, vol. 15(6), pages 733-752, October.
    27. Foray, D. & Mowery, D.C. & Nelson, R.R., 2012. "Public R&D and social challenges: What lessons from mission R&D programs?," Research Policy, Elsevier, vol. 41(10), pages 1697-1702.
    28. Franco Malerba & Richard Nelson & Luigi Orsenigo & Sidney Winter, 2007. "Demand, innovation, and the dynamics of market structure: The role of experimental users and diverse preferences," Journal of Evolutionary Economics, Springer, vol. 17(4), pages 371-399, August.
    29. Helpman, Elhanan & Trajtenberg, Manuel, 1994. "A Time to Sow and a Time to Reap: Growth Based on General Purpose Technologies," CEPR Discussion Papers 1080, C.E.P.R. Discussion Papers.
    30. Bronwyn H. Hall & Manuel Trajtenberg, 2004. "Uncovering GPTS with Patent Data," NBER Working Papers 10901, National Bureau of Economic Research, Inc.
    31. Ruttan, Vernon W., 2006. "Is War Necessary for Economic Growth?: Military Procurement and Technology Development," OUP Catalogue, Oxford University Press, number 9780195188042.
    32. Jan Youtie & Maurizio Iacopetta & Stuart Graham, 2008. "Assessing the nature of nanotechnology: can we uncover an emerging general purpose technology?," The Journal of Technology Transfer, Springer, vol. 33(3), pages 315-329, June.
    33. Harhoff, Dietmar & Scherer, Frederic M. & Vopel, Katrin, 2003. "Citations, family size, opposition and the value of patent rights," Research Policy, Elsevier, vol. 32(8), pages 1343-1363, September.
    34. Mowery, David & Rosenberg, Nathan, 1993. "The influence of market demand upon innovation: A critical review of some recent empirical studies," Research Policy, Elsevier, vol. 22(2), pages 107-108, April.
    35. James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," Econometrica, Econometric Society, vol. 66(5), pages 1017-1098, September.
    36. Marco Caliendo & Sabine Kopeinig, 2008. "Some Practical Guidance For The Implementation Of Propensity Score Matching," Journal of Economic Surveys, Wiley Blackwell, vol. 22(1), pages 31-72, February.
    37. Kenneth Carlaw & Richard Lipsey, 2011. "Sustained endogenous growth driven by structured and evolving general purpose technologies," Journal of Evolutionary Economics, Springer, vol. 21(4), pages 563-593, October.
    38. Guido Cozzi & Giammario Impullitti, 2010. "Government Spending Composition, Technical Change, and Wage Inequality," Journal of the European Economic Association, MIT Press, vol. 8(6), pages 1325-1358, December.
    39. Mowery, David C. & Nelson, Richard R. & Martin, Ben R., 2010. "Technology policy and global warming: Why new policy models are needed (or why putting new wine in old bottles won't work)," Research Policy, Elsevier, vol. 39(8), pages 1011-1023, October.
    40. Guerzoni, Marco & Raiteri, Emilio, 2015. "Demand-side vs. supply-side technology policies: Hidden treatment and new empirical evidence on the policy mix," Research Policy, Elsevier, vol. 44(3), pages 726-747.
    41. Aschhoff, Birgit & Sofka, Wolfgang, 2009. "Innovation on demand--Can public procurement drive market success of innovations?," Research Policy, Elsevier, vol. 38(8), pages 1235-1247, October.
    42. Dirk Czarnitzki & Katrin Hussinger & Cédric Schneider, 2011. "Commercializing academic research: the quality of faculty patenting," Industrial and Corporate Change, Oxford University Press, vol. 20(5), pages 1403-1437, October.
    43. Flanagan, Kieron & Uyarra, Elvira & Laranja, Manuel, 2011. "Reconceptualising the 'policy mix' for innovation," Research Policy, Elsevier, vol. 40(5), pages 702-713, June.
    44. Bronwyn H. Hall, 2005. "A Note on the Bias in Herfindahl-Type Measures Based on Count Data," Revue d'Économie Industrielle, Programme National Persée, vol. 110(1), pages 149-156.
    45. Maryann P. Feldman & Ji Woong Yoon, 2012. "An empirical test for general purpose technology: an examination of the Cohen--Boyer rDNA technology," Industrial and Corporate Change, Oxford University Press, vol. 21(2), pages 249-275, April.
    46. Mowery, David C., 2012. "Defense-related R&D as a model for “Grand Challenges” technology policies," Research Policy, Elsevier, vol. 41(10), pages 1703-1715.
    47. Michael Lechner, 2008. "A Note on the Common Support Problem in Applied Evaluation Studies," Annals of Economics and Statistics, GENES, issue 91-92, pages 217-235.
    48. Jean O. Lanjouw & Mark Schankerman, 2004. "Patent Quality and Research Productivity: Measuring Innovation with Multiple Indicators," Economic Journal, Royal Economic Society, vol. 114(495), pages 441-465, April.
    49. repec:adr:anecst:y:2008:i:91-92:p:11 is not listed on IDEAS
    50. repec:adr:anecst:y:2008:i:91-92 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arora, Ashish & Belenzon, Sharon & Sheer, Lia, 2021. "Matching patents to compustat firms, 1980–2015: Dynamic reassignment, name changes, and ownership structures," Research Policy, Elsevier, vol. 50(5).
    2. De Rassenfosse, Gaétan & Decarolis, Francesco & Giuffrida, Leonardo Maria & Iossa, Elisabetta & Mollisi, Vincenzo & Raiteri, Emilio & Spagnolo, Giancarlo, 2019. "Buyers' Role in Innovation Procurement," CEPR Discussion Papers 13777, C.E.P.R. Discussion Papers.
    3. Christoph March & Ina Schieferdecker, 2021. "Technological Sovereignty as Ability, not Autarky," Munich Papers in Political Economy 12, TUM School of Governance at the Technical University of Munich.
    4. Uyarra, Elvira & Zabala-Iturriagagoitia, Jon Mikel & Flanagan, Kieron & Magro, Edurne, 2020. "Public procurement, innovation and industrial policy: Rationales, roles, capabilities and implementation," Research Policy, Elsevier, vol. 49(1).
    5. Gaétan de Rassenfosse & Adam Jaffe & Emilio Raiteri, 2019. "The procurement of innovation by the U.S. government," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-11, August.
    6. Christoph March & Ina Schieferdecker, 2021. "Technological Sovereignty as Ability, Not Autarky," CESifo Working Paper Series 9139, CESifo.
    7. Dai, Xiaoyong & Li, Yanchao & Chen, Kaihua, 2021. "Direct demand-pull and indirect certification effects of public procurement for innovation," Technovation, Elsevier, vol. 101(C).
    8. Paolo Castelnuovo & Stefano Clo & Massimo Florio, 2021. "Space policy drives innovation through technological procurement: evidence from Italy," Working Papers - Economics wp2021_08.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    9. Francesco Crespi & Serenella Caravella, 2020. "The Role Of Public Procurement As Innovation Lever: Evidence From Italian Manufacturing Firms," Departmental Working Papers of Economics - University 'Roma Tre' 0252, Department of Economics - University Roma Tre.
    10. Gianluca Pallante & Emanuele Russo & Andrea Roventini, 2020. "Does mission-oriented funding stimulate private R&D? Evidence from military R&D for US states," LEM Papers Series 2020/32, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. RAITERI Emilio, 2015. "A time to nourish? Evaluating the impact of innovative public procurement on technological generality through patent data," Cahiers du GREThA (2007-2019) 2015-05, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    2. Ghisetti, Claudia, 2017. "Demand-pull and environmental innovations: Estimating the effects of innovative public procurement," Technological Forecasting and Social Change, Elsevier, vol. 125(C), pages 178-187.
    3. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2020. "Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?," Research Policy, Elsevier, vol. 49(2).
    4. Guerzoni, Marco & Raiteri, Emilio, 2015. "Demand-side vs. supply-side technology policies: Hidden treatment and new empirical evidence on the policy mix," Research Policy, Elsevier, vol. 44(3), pages 726-747.
    5. Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014. "Knowledge spillovers from clean and dirty technologies," LSE Research Online Documents on Economics 60501, London School of Economics and Political Science, LSE Library.
    6. Jungpyo Lee & So Young Sohn, 2017. "What makes the first forward citation of a patent occur earlier?," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 279-298, October.
    7. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    8. Munari, Federico & Toschi, Laura, 2014. "Running ahead in the nanotechnology gold rush. Strategic patenting in emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 83(C), pages 194-207.
    9. Uwe Cantner & Simone Vannuccini, 2012. "A New View of General Purpose Technologies," Jena Economic Research Papers 2012-054, Friedrich-Schiller-University Jena.
    10. Guerzoni, Marco & Raiteri, Emilio, 2012. "Innovative public procurement and R&D Subsidies: hidden treatment and new empirical evidence on the technology policy mix in a quasi-experimental setting," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201218, University of Turin.
    11. Corradini, Carlo & De Propris, Lisa, 2017. "Beyond local search: Bridging platforms and inter-sectoral technological integration," Research Policy, Elsevier, vol. 46(1), pages 196-206.
    12. Giuliani, Elisa & Martinelli, Arianna & Rabellotti, Roberta, 2016. "Is Co-Invention Expediting Technological Catch Up? A Study of Collaboration between Emerging Country Firms and EU Inventors," World Development, Elsevier, vol. 77(C), pages 192-205.
    13. Higham, Kyle & de Rassenfosse, Gaétan & Jaffe, Adam B., 2021. "Patent Quality: Towards a Systematic Framework for Analysis and Measurement," Research Policy, Elsevier, vol. 50(4).
    14. Hur, Wonchang & Oh, Junbyoung, 2021. "A man is known by the company he keeps?: A structural relationship between backward citation and forward citation of patents," Research Policy, Elsevier, vol. 50(1).
    15. Antonio Messeni Petruzzelli & Daniele Rotolo & Vito Albino, 2014. "Determinants of Patent Citations in Biotechnology: An Analysis of Patent Influence Across the Industrial and Organizational Boundaries," SPRU Working Paper Series 2014-05, SPRU - Science Policy Research Unit, University of Sussex Business School.
    16. Dirk Czarnitzki & Katrin Hussinger & Cédric Schneider, 2012. "The nexus between science and industry: evidence from faculty inventions," The Journal of Technology Transfer, Springer, vol. 37(5), pages 755-776, October.
    17. Sarah Kaplan & Keyvan Vakili, 2015. "The double-edged sword of recombination in breakthrough innovation," Strategic Management Journal, Wiley Blackwell, vol. 36(10), pages 1435-1457, October.
    18. Dirk Czarnitzki & Katrin Hussinger & Cédric Schneider, 2011. "Commercializing academic research: the quality of faculty patenting," Industrial and Corporate Change, Oxford University Press, vol. 20(5), pages 1403-1437, October.
    19. Michele Cincera & Ela Ince, 2019. "Types of Innovation and Firm performance," iCite Working Papers 2019-032, ULB -- Universite Libre de Bruxelles.
    20. Dirk Czarnitzki & Katrin Hussinger & Cédric Schneider, 2009. "Why Challenge the Ivory Tower? New Evidence on the Basicness of Academic Patents," Kyklos, Wiley Blackwell, vol. 62(4), pages 488-499, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:respol:v:47:y:2018:i:5:p:936-952. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/respol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/respol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.