IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v13y2024i1ne504.html
   My bibliography  Save this article

Principal component analysis of day‐ahead electricity price forecasting in CAISO and its implications for highly integrated renewable energy markets

Author

Listed:
  • Joseph Nyangon
  • Ruth Akintunde

Abstract

Electricity price forecasting is crucial for grid management, renewable energy integration, power system planning, and price volatility management. However, poor accuracy due to complex generation mix data and heteroskedasticity poses a challenge for utilities and grid operators. This paper evaluates advanced analytics methods that utilize principal component analysis (PCA) to improve forecasting accuracy amidst heteroskedastic noise. Drawing on the experience of the California Independent System Operator (CAISO), a leading producer of renewable electricity, the study analyzes hourly electricity prices and demand data from 2016 to 2021 to assess the impact of day‐ahead forecasting on California's evolving generation mix. To enhance data quality, traditional outlier analysis using the interquartile range (IQR) method is first applied, followed by a novel supervised PCA technique called robust PCA (RPCA) for more effective outlier detection and elimination. The combined approach significantly improves data symmetry and reduces skewness. Multiple linear regression models are then constructed to forecast electricity prices using both raw and transformed features obtained through PCA. Results demonstrate that the model utilizing transformed features, after outlier removal using the traditional method and SAS Sparse Matrix method, achieves the highest forecasting performance. Notably, the SAS Sparse Matrix outlier removal method, implemented via proc RPCA, greatly contributes to improved model accuracy. This study highlights that PCA methods enhance electricity price forecasting accuracy, facilitating the integration of renewables like solar and wind, thereby aiding grid management and promoting renewable growth in day‐ahead markets. This article is categorized under: Energy and Power Systems > Energy Management Energy and Power Systems > Distributed Generation Emerging Technologies > Digitalization

Suggested Citation

  • Joseph Nyangon & Ruth Akintunde, 2024. "Principal component analysis of day‐ahead electricity price forecasting in CAISO and its implications for highly integrated renewable energy markets," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(1), January.
  • Handle: RePEc:bla:wireae:v:13:y:2024:i:1:n:e504
    DOI: 10.1002/wene.504
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wene.504
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wene.504?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:13:y:2024:i:1:n:e504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.