IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v91y2015icp601-609.html
   My bibliography  Save this article

Electricity price forecasting with a BED (Bivariate EMD Denoising) methodology

Author

Listed:
  • He, Kaijian
  • Yu, Lean
  • Tang, Ling

Abstract

The forecasting of electricity price remains the subject of increasingly intense research attention as the market structure becomes more complicated with the deregulation waves and the increasing level of price fluctuations observed. The heterogeneous data structure revealed in the recent empirical studies serves as the important stylized fact to be explored and analyzed in the heterogeneous market structure framework. Facing the increasingly diversified and more integrated market environment, the forecasting model in the electricity markets needs to take into account the individual and inter dependent heterogeneity features such as noises. In this paper, under the proposed HMH (Heterogeneous Market Hypothesis), we propose a BED (Bivariate EMD Denoising) based forecasting methodology to track and predict the electricity price movement. The BED algorithm is introduced as the feature extraction tool to identify and remove the noises, where the Error Entropy is further used as the criteria to determine the optimal level in EMD (Empirical Mode Decomposition) to be shrinkaged. Empirical studies conducted in the Australian electricity markets demonstrate the significant performance improvement of the proposed BED algorithm incorporating the heterogeneous market characteristics, against benchmark models.

Suggested Citation

  • He, Kaijian & Yu, Lean & Tang, Ling, 2015. "Electricity price forecasting with a BED (Bivariate EMD Denoising) methodology," Energy, Elsevier, vol. 91(C), pages 601-609.
  • Handle: RePEc:eee:energy:v:91:y:2015:i:c:p:601-609
    DOI: 10.1016/j.energy.2015.08.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215010956
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.08.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brock, William A & LeBaron, Blake D, 1996. "A Dynamic Structural Model for Stock Return Volatility and Trading Volume," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 94-110, February.
    2. Diongue, Abdou Kâ & Guégan, Dominique & Vignal, Bertrand, 2009. "Forecasting electricity spot market prices with a k-factor GIGARCH process," Applied Energy, Elsevier, vol. 86(4), pages 505-510, April.
    3. Tiwari, Aviral Kumar & Dar, Arif Billah & Bhanja, Niyati, 2013. "Oil price and exchange rates: A wavelet based analysis for India," Economic Modelling, Elsevier, vol. 31(C), pages 414-422.
    4. Gencay, Ramazan & Selcuk, Faruk & Ulugulyagci, Abdurrahman, 2003. "High volatility, thick tails and extreme value theory in value-at-risk estimation," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 337-356, October.
    5. Theodore Panagiotidis, 2002. "Testing the assumption of Linearity," Economics Bulletin, AccessEcon, vol. 3(29), pages 1-9.
    6. He, Kaijian & Wang, Lijun & Zou, Yingchao & Lai, Kin Keung, 2014. "Value at risk estimation with entropy-based wavelet analysis in exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 62-71.
    7. Goeree, Jacob K. & Hommes, Cars H., 2000. "Heterogeneous beliefs and the non-linear cobweb model," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 761-798, June.
    8. J. Doyne Farmer, 2002. "Market force, ecology and evolution," Industrial and Corporate Change, Oxford University Press, vol. 11(5), pages 895-953, November.
    9. Bowden, Nicholas & Payne, James E., 2008. "Short term forecasting of electricity prices for MISO hubs: Evidence from ARIMA-EGARCH models," Energy Economics, Elsevier, vol. 30(6), pages 3186-3197, November.
    10. C. H. Hommes, 2001. "Financial markets as nonlinear adaptive evolutionary systems," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 149-167.
    11. Peter Reinhard Hansen & Allan Timmermann, 2012. "Choice of Sample Split in Out-of-Sample Forecast Evaluation," CREATES Research Papers 2012-43, Department of Economics and Business Economics, Aarhus University.
    12. Athanasopoulos, George & Vahid, Farshid, 2008. "VARMA versus VAR for Macroeconomic Forecasting," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 237-252, April.
    13. Stoft, Steven, 1997. "Transmission pricing zones: simple or complex?," The Electricity Journal, Elsevier, vol. 10(1), pages 24-31.
    14. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
    15. Zhang, Xun & Lai, K.K. & Wang, Shou-Yang, 2008. "A new approach for crude oil price analysis based on Empirical Mode Decomposition," Energy Economics, Elsevier, vol. 30(3), pages 905-918, May.
    16. Deng, S.J. & Oren, S.S., 2006. "Electricity derivatives and risk management," Energy, Elsevier, vol. 31(6), pages 940-953.
    17. Conejo, Antonio J. & Contreras, Javier & Espinola, Rosa & Plazas, Miguel A., 2005. "Forecasting electricity prices for a day-ahead pool-based electric energy market," International Journal of Forecasting, Elsevier, vol. 21(3), pages 435-462.
    18. Weron, Rafal & Misiorek, Adam, 2008. "Forecasting spot electricity prices: A comparison of parametric and semiparametric time series models," International Journal of Forecasting, Elsevier, vol. 24(4), pages 744-763.
    19. Brock, William A. & Kleidon, Allan W., 1992. "Periodic market closure and trading volume : A model of intraday bids and asks," Journal of Economic Dynamics and Control, Elsevier, vol. 16(3-4), pages 451-489.
    20. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    21. Borenstein, Severin & Bushnell, James & Kahn, Edward & Stoft, Steven, 1995. "Market power in California electricity markets," Utilities Policy, Elsevier, vol. 5(3-4), pages 219-236.
    22. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
    23. Ventosa, Mariano & Baillo, Alvaro & Ramos, Andres & Rivier, Michel, 2005. "Electricity market modeling trends," Energy Policy, Elsevier, vol. 33(7), pages 897-913, May.
    24. William A. Brock & Cars H. Hommes, 1997. "A Rational Route to Randomness," Econometrica, Econometric Society, vol. 65(5), pages 1059-1096, September.
    25. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    26. An, Ning & Zhao, Weigang & Wang, Jianzhou & Shang, Duo & Zhao, Erdong, 2013. "Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting," Energy, Elsevier, vol. 49(C), pages 279-288.
    27. Melvin J. Hinich, 1982. "Testing For Gaussianity And Linearity Of A Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 3(3), pages 169-176, May.
    28. Hsieh, David A., 1993. "Implications of Nonlinear Dynamics for Financial Risk Management," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(1), pages 41-64, March.
    29. Reboredo, Juan C. & Rivera-Castro, Miguel A., 2013. "A wavelet decomposition approach to crude oil price and exchange rate dependence," Economic Modelling, Elsevier, vol. 32(C), pages 42-57.
    30. Crowley Patrick M., 2012. "How Do You Make A Time Series Sing Like a Choir? Extracting Embedded Frequencies from Economic and Financial Time Series using Empirical Mode Decomposition," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(5), pages 1-31, December.
    31. Deb, Rajat & Albert, Richard & Hsue, Lie-Long & Brown, Nicholas, 2000. "How to Incorporate Volatility and Risk in Electricity Price Forecasting," The Electricity Journal, Elsevier, vol. 13(4), pages 65-75, May.
    32. Gençay, Ramazan & Dacorogna, Michel & Muller, Ulrich A. & Pictet, Olivier & Olsen, Richard, 2001. "An Introduction to High-Frequency Finance," Elsevier Monographs, Elsevier, edition 1, number 9780122796715.
    33. He, Kaijian & Yu, Lean & Lai, Kin Keung, 2012. "Crude oil price analysis and forecasting using wavelet decomposed ensemble model," Energy, Elsevier, vol. 46(1), pages 564-574.
    34. Lindström, Erik & Regland, Fredrik, 2012. "Modeling extreme dependence between European electricity markets," Energy Economics, Elsevier, vol. 34(4), pages 899-904.
    35. Orlov, Alexei G., 2009. "A cospectral analysis of exchange rate comovements during Asian financial crisis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(5), pages 742-758, December.
    36. Aleksandr Rudkevich & Max Duckworth & Richard Rosen, 1998. "Modeling Electricity Pricing in a Deregulated Generation Industry: The Potential for Oligopoly Pricing in a Poolco," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 19-48.
    37. repec:zbw:bofrdp:2009_033 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ding, Yishan, 2018. "A novel decompose-ensemble methodology with AIC-ANN approach for crude oil forecasting," Energy, Elsevier, vol. 154(C), pages 328-336.
    2. Afanasyev, Dmitriy O. & Fedorova, Elena A., 2019. "On the impact of outlier filtering on the electricity price forecasting accuracy," Applied Energy, Elsevier, vol. 236(C), pages 196-210.
    3. Alexopoulos, Thomas A., 2017. "The growing importance of natural gas as a predictor for retail electricity prices in US," Energy, Elsevier, vol. 137(C), pages 219-233.
    4. Yanbing Lin & Hongyuan Luo & Deyun Wang & Haixiang Guo & Kejun Zhu, 2017. "An Ensemble Model Based on Machine Learning Methods and Data Preprocessing for Short-Term Electric Load Forecasting," Energies, MDPI, vol. 10(8), pages 1-16, August.
    5. He, Kaijian & Chen, Yanhui & Tso, Geoffrey K.F., 2018. "Forecasting exchange rate using Variational Mode Decomposition and entropy theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 15-25.
    6. Hakan Acaroğlu & Fausto Pedro García Márquez, 2021. "Comprehensive Review on Electricity Market Price and Load Forecasting Based on Wind Energy," Energies, MDPI, vol. 14(22), pages 1-23, November.
    7. Liu, Luyao & Bai, Feifei & Su, Chenyu & Ma, Cuiping & Yan, Ruifeng & Li, Hailong & Sun, Qie & Wennersten, Ronald, 2022. "Forecasting the occurrence of extreme electricity prices using a multivariate logistic regression model," Energy, Elsevier, vol. 247(C).
    8. Gabrielli, Paolo & Wüthrich, Moritz & Blume, Steffen & Sansavini, Giovanni, 2022. "Data-driven modeling for long-term electricity price forecasting," Energy, Elsevier, vol. 244(PB).
    9. He, Kaijian & Chen, Yanhui & Tso, Geoffrey K.F., 2017. "Price forecasting in the precious metal market: A multivariate EMD denoising approach," Resources Policy, Elsevier, vol. 54(C), pages 9-24.
    10. Bhatia, Kushagra & Mittal, Rajat & Varanasi, Jyothi & Tripathi, M.M., 2021. "An ensemble approach for electricity price forecasting in markets with renewable energy resources," Utilities Policy, Elsevier, vol. 70(C).
    11. Niu, Hongli & Xu, Kunliang & Liu, Cheng, 2021. "A decomposition-ensemble model with regrouping method and attention-based gated recurrent unit network for energy price prediction," Energy, Elsevier, vol. 231(C).
    12. Zhang, Wenbin & Tian, Lixin & Wang, Minggang & Zhen, Zaili & Fang, Guochang, 2016. "The evolution model of electricity market on the stable development in China and its dynamic analysis," Energy, Elsevier, vol. 114(C), pages 344-359.
    13. Lu, Shibao & Zhang, Xiaoling & Shang, Yizi & Li, Wei & Skitmore, Martin & Jiang, Shuli & Xue, Yangang, 2018. "Improving Hilbert–Huang transform for energy-correlation fluctuation in hydraulic engineering," Energy, Elsevier, vol. 164(C), pages 1341-1350.
    14. Zhang, Jinliang & Tan, Zhongfu & Wei, Yiming, 2020. "An adaptive hybrid model for short term electricity price forecasting," Applied Energy, Elsevier, vol. 258(C).
    15. Chang, Zihan & Zhang, Yang & Chen, Wenbo, 2019. "Electricity price prediction based on hybrid model of adam optimized LSTM neural network and wavelet transform," Energy, Elsevier, vol. 187(C).
    16. Usman Zafar & Neil Kellard & Dmitri Vinogradov, 2022. "Multistage optimization filter for trend‐based short‐term forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 345-360, March.
    17. Jasiński, Tomasz, 2020. "Use of new variables based on air temperature for forecasting day-ahead spot electricity prices using deep neural networks: A new approach," Energy, Elsevier, vol. 213(C).
    18. Florian Ziel & Rafal Weron, 2016. "Day-ahead electricity price forecasting with high-dimensional structures: Univariate vs. multivariate models," HSC Research Reports HSC/16/08, Hugo Steinhaus Center, Wroclaw University of Technology.
    19. Wang, Deyun & Luo, Hongyuan & Grunder, Olivier & Lin, Yanbing & Guo, Haixiang, 2017. "Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm," Applied Energy, Elsevier, vol. 190(C), pages 390-407.
    20. Fang Guo & Shangyun Deng & Weijia Zheng & An Wen & Jinfeng Du & Guangshan Huang & Ruiyang Wang, 2022. "Short-Term Electricity Price Forecasting Based on the Two-Layer VMD Decomposition Technique and SSA-LSTM," Energies, MDPI, vol. 15(22), pages 1-20, November.
    21. Qing Peng & Fenghua Wen & Xu Gong, 2021. "Time‐dependent intrinsic correlation analysis of crude oil and the US dollar based on CEEMDAN," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 834-848, January.
    22. Huang, Junwei & Xiao, Qingtai & Liu, Jingjing & Wang, Hua, 2019. "Modeling heat transfer properties in an ORC direct contact evaporator using RBF neural network combined with EMD," Energy, Elsevier, vol. 173(C), pages 306-316.
    23. Siddiqui, Atiq W. & Basu, Rounaq, 2020. "An empirical analysis of relationships between cyclical components of oil price and tanker freight rates," Energy, Elsevier, vol. 200(C).
    24. Ziel, Florian & Weron, Rafał, 2018. "Day-ahead electricity price forecasting with high-dimensional structures: Univariate vs. multivariate modeling frameworks," Energy Economics, Elsevier, vol. 70(C), pages 396-420.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Kaijian & Yu, Lean & Lai, Kin Keung, 2012. "Crude oil price analysis and forecasting using wavelet decomposed ensemble model," Energy, Elsevier, vol. 46(1), pages 564-574.
    2. He, Kaijian & Wang, Lijun & Zou, Yingchao & Lai, Kin Keung, 2014. "Value at risk estimation with entropy-based wavelet analysis in exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 62-71.
    3. Kaijian He & Kin Keung Lai & Guocheng Xiang, 2012. "Portfolio Value at Risk Estimate for Crude Oil Markets: A Multivariate Wavelet Denoising Approach," Energies, MDPI, vol. 5(4), pages 1-26, April.
    4. Kaijian He & Rui Zha & Jun Wu & Kin Keung Lai, 2016. "Multivariate EMD-Based Modeling and Forecasting of Crude Oil Price," Sustainability, MDPI, vol. 8(4), pages 1-11, April.
    5. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    6. Bekiros, Stelios D., 2015. "Heuristic learning in intraday trading under uncertainty," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 34-49.
    7. He, Kaijian & Xu, Yang & Zou, Yingchao & Tang, Ling, 2015. "Electricity price forecasts using a Curvelet denoising based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 425(C), pages 1-9.
    8. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    9. Rafal Weron & Florian Ziel, 2018. "Electricity price forecasting," HSC Research Reports HSC/18/08, Hugo Steinhaus Center, Wroclaw University of Technology.
    10. Hommes, C.H., 2005. "Heterogeneous Agents Models: two simple examples, forthcoming In: Lines, M. (ed.) Nonlinear Dynamical Systems in Economics, CISM Courses and Lectures, Springer, 2005, pp.131-164," CeNDEF Working Papers 05-01, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    11. Cars Hommes, 2005. "Heterogeneous Agent Models: Two Simple Case Studies," Tinbergen Institute Discussion Papers 05-055/1, Tinbergen Institute.
    12. Hommes, C.H., 2005. "Heterogeneous Agent Models in Economics and Finance, In: Handbook of Computational Economics II: Agent-Based Computational Economics, edited by Leigh Tesfatsion and Ken Judd , Elsevier, Amsterdam 2006," CeNDEF Working Papers 05-03, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    13. Pape, Christian & Hagemann, Simon & Weber, Christoph, 2016. "Are fundamentals enough? Explaining price variations in the German day-ahead and intraday power market," Energy Economics, Elsevier, vol. 54(C), pages 376-387.
    14. Gianfreda, Angelica & Grossi, Luigi, 2012. "Forecasting Italian electricity zonal prices with exogenous variables," Energy Economics, Elsevier, vol. 34(6), pages 2228-2239.
    15. Brock, William A. & Hommes, Cars H. & Wagener, Florian O. O., 2005. "Evolutionary dynamics in markets with many trader types," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 7-42, February.
    16. Sornette, Didier & Zhou, Wei-Xing, 2006. "Importance of positive feedbacks and overconfidence in a self-fulfilling Ising model of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 704-726.
    17. Brock, W.A. & Hommes, C.H. & Wagener, F.O.O., 2001. "Evolutionary Dynamics in Financial Markets With Many Trader Types," CeNDEF Working Papers 01-01, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    18. Christian Pape & Arne Vogler & Oliver Woll & Christoph Weber, 2017. "Forecasting the distributions of hourly electricity spot prices," EWL Working Papers 1705, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised May 2017.
    19. Usman Zafar & Neil Kellard & Dmitri Vinogradov, 2022. "Multistage optimization filter for trend‐based short‐term forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 345-360, March.
    20. Marcos Álvarez-Díaz, 2020. "Is it possible to accurately forecast the evolution of Brent crude oil prices? An answer based on parametric and nonparametric forecasting methods," Empirical Economics, Springer, vol. 59(3), pages 1285-1305, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:91:y:2015:i:c:p:601-609. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.journals.elsevier.com/energy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.