IDEAS home Printed from https://ideas.repec.org/a/tpr/restat/v99y2017i2p314-318.html
   My bibliography  Save this article

The Explicit Formula for the Hodrick-Prescott Filter in a Finite Sample

Author

Listed:
  • Adriana Cornea-Madeira

    (University of York)

Abstract

We derive the exact expression for the weights of the Hodrick-Prescott (HP) filter in a finite sample without making any assumptions about the statistical properties of the time series. We use the results to give insights into the properties of the HP filter and to build a fast algorithm with computational improvements by a factor of up to three times in samples typical in economics.

Suggested Citation

  • Adriana Cornea-Madeira, 2017. "The Explicit Formula for the Hodrick-Prescott Filter in a Finite Sample," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 314-318, May.
  • Handle: RePEc:tpr:restat:v:99:y:2017:i:2:p:314-318
    as

    Download full text from publisher

    File URL: http://www.mitpressjournals.org/doi/pdf/10.1162/REST_a_00594
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mikael Bask & João Madeira, 2021. "Extrapolative expectations and macroeconomic dynamics: Evidence from an estimated DSGE model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1101-1111, January.
    2. Peter C. B. Phillips & Zhentao Shi, 2021. "Boosting: Why You Can Use The Hp Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 521-570, May.
    3. Kristian Jönsson, 2020. "Real-time US GDP gap properties using Hamilton’s regression-based filter," Empirical Economics, Springer, vol. 59(1), pages 307-314, July.
    4. Peter C.B. Phillips & Zhentao Shi, 2019. "Boosting the Hodrick-Prescott Filter," Cowles Foundation Discussion Papers 2192, Cowles Foundation for Research in Economics, Yale University.
    5. Lee, Taehyun & Moutzouris, Ioannis C & Papapostolou, Nikos C & Fatouh, Mahmoud, 2023. "Foreign exchange hedging using regime-switching models: the case of pound sterling," Bank of England working papers 1042, Bank of England.
    6. Lee, Sokbae & Liao, Yuan & Seo, Myung Hwan & Shin, Youngki, 2021. "Sparse HP filter: Finding kinks in the COVID-19 contact rate," Journal of Econometrics, Elsevier, vol. 220(1), pages 158-180.
    7. Jylhä, Petri & Lof, Matthijs, 2022. "Mind the Basel gap," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    8. Hiroshi Yamada, 2023. "Quantile regression version of Hodrick–Prescott filter," Empirical Economics, Springer, vol. 64(4), pages 1631-1645, April.
    9. Peter C. B. Phillips & Sainan Jin, 2021. "Business Cycles, Trend Elimination, And The Hp Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 469-520, May.
    10. Hiroshi Yamada & Ruoyi Bao, 2022. "$$\ell _{1}$$ ℓ 1 Common Trend Filtering," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1005-1025, March.
    11. Kristian Jönsson, 2020. "Cyclical Dynamics and Trend/Cycle Definitions: Comparing the HP and Hamilton Filters," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 16(2), pages 151-162, November.
    12. Ziwei Mei & Peter C. B. Phillips & Zhentao Shi, 2022. "The boosted HP filter is more general than you might think," Papers 2209.09810, arXiv.org, revised Apr 2024.
    13. Wolf, Elias & Mokinski, Frieder & Schüler, Yves, 2020. "On adjusting the one-sided Hodrick-Prescott filter," Discussion Papers 11/2020, Deutsche Bundesbank.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tpr:restat:v:99:y:2017:i:2:p:314-318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: The MIT Press (email available below). General contact details of provider: https://direct.mit.edu/journals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.