IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/27047.html
   My bibliography  Save this paper

Estimation of the common component in Dynamic Factor Models

Author

Listed:
  • Caro Navarro, Ángela
  • Peña Sánchez de Rivera, Daniel

Abstract

One of the most effective techniques that allows a low-dimensional representation of Big Datasets is the Dynamic Factor Model (DFM). We analyze the finite sample performance of the well-known Principal Component estimator for the common component under different scenarios. Simulation results show that for data samples with large number of observations and small time series dimension, the variance-covariance matrix specification with lags provides better estimations than the classic variance-covariance matrix. However, in high-dimension data samples the classic variance-covariance matrix performs better no matter the sample size. Second, we apply the Principal Component estimator to obtain estimates of the business cycles of the Euro Area and its country members. This application, together with a cluster analysis, studies the phenomenon known as the Two-Speed Europe with two groups of countries not geographically related.

Suggested Citation

  • Caro Navarro, Ángela & Peña Sánchez de Rivera, Daniel, 2018. "Estimation of the common component in Dynamic Factor Models," DES - Working Papers. Statistics and Econometrics. WS 27047, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:27047
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/bitstream/handle/10016/27047/ws201803.pdf?sequence=3
    Download Restriction: no

    References listed on IDEAS

    as
    1. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    2. Camacho, Maximo & Perez-Quiros, Gabriel & Saiz, Lorena, 2006. "Are European business cycles close enough to be just one?," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1687-1706.
    3. Carlo Di Giorgio, 2016. "Business Cycle Synchronization of CEECs with the Euro Area: A Regime Switching Approach," Journal of Common Market Studies, Wiley Blackwell, vol. 54(2), pages 284-300, March.
    4. Jiazhu Pan & Qiwei Yao, 2008. "Modelling multiple time series via common factors," Biometrika, Biometrika Trust, vol. 95(2), pages 365-379.
    5. Gogas, Periklis & Kothroulas, George, 2009. "Two speed Europe and business cycle synchronization in the European Union: The effect of the common currency," MPRA Paper 13909, University Library of Munich, Germany.
    6. Mike Artis & Hans-Martin Krolzig & Juan Toro, 2004. "The European business cycle," Oxford Economic Papers, Oxford University Press, vol. 56(1), pages 1-44, January.
    7. Jörg Breitung & Sandra Eickmeier, 2006. "Dynamic factor models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(1), pages 27-42, March.
    8. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    9. Filippo Ferroni & Benjamin Klaus, 2015. "Euro Area business cycles in turbulent times: convergence or decoupling?," Applied Economics, Taylor & Francis Journals, vol. 47(34-35), pages 3791-3815, July.
    10. Rebeca Jiménez-Rodríguez & Amalia Morales-Zumaquero & Balázs Égert, 2013. "Business Cycle Synchronization between Euro Area and C entral and E astern E uropean C ountries," Review of Development Economics, Wiley Blackwell, vol. 17(2), pages 379-395, May.
    11. repec:dgr:rugccs:200605 is not listed on IDEAS
    12. Caldeira, João F. & Moura, Guilherme V. & Santos, André A.P., 2016. "Bond portfolio optimization using dynamic factor models," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 128-158.
    13. Giovanni Motta & Hernando Ombao, 2012. "Evolutionary Factor Analysis of Replicated Time Series," Biometrics, The International Biometric Society, vol. 68(3), pages 825-836, September.
    14. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
    15. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    16. Camacho, Maximo & Perez-Quiros, Gabriel & Saiz, Lorena, 2008. "Do European business cycles look like one?," Journal of Economic Dynamics and Control, Elsevier, vol. 32(7), pages 2165-2190, July.
    17. Pan, Jiazhu & Yao, Qiwei, 2008. "Modelling multiple time series via common factors," LSE Research Online Documents on Economics 22876, London School of Economics and Political Science, LSE Library.
    18. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    19. Motta, Giovanni & Hafner, Christian M. & von Sachs, Rainer, 2011. "Locally Stationary Factor Models: Identification And Nonparametric Estimation," Econometric Theory, Cambridge University Press, vol. 27(06), pages 1279-1319, December.
    20. Mihály Borsi & Norbert Metiu, 2015. "The evolution of economic convergence in the European Union," Empirical Economics, Springer, vol. 48(2), pages 657-681, March.
    21. M. Ayhan Kose & Christopher Otrok & Charles H. Whiteman, 2003. "International Business Cycles: World, Region, and Country-Specific Factors," American Economic Review, American Economic Association, vol. 93(4), pages 1216-1239, September.
    22. Mario Forni & Lucrezia Reichlin, 1998. "Let's Get Real: A Factor Analytical Approach to Disaggregated Business Cycle Dynamics," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 453-473.
    23. Bai, Jushan & Ng, Serena, 2008. "Large Dimensional Factor Analysis," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(2), pages 89-163, June.
    24. Stock, James H. & Watson, Mark, 2011. "Dynamic Factor Models," Scholarly Articles 28469541, Harvard University Department of Economics.
    25. Lam, Clifford & Yao, Qiwei, 2012. "Factor modeling for high-dimensional time series: inference for the number of factors," LSE Research Online Documents on Economics 45684, London School of Economics and Political Science, LSE Library.
    26. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    27. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    28. Jushan Bai & Serena Ng, 2006. "Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions," Econometrica, Econometric Society, vol. 74(4), pages 1133-1150, July.
    29. Connor, Gregory & Korajczyk, Robert A., 1986. "Performance measurement with the arbitrage pricing theory : A new framework for analysis," Journal of Financial Economics, Elsevier, vol. 15(3), pages 373-394, March.
    30. repec:taf:jnlasa:v:111:y:2016:i:515:p:1121-1131 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Time series;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:27047. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.