IDEAS home Printed from https://ideas.repec.org/p/bfr/banfra/478.html

A stylized applied energy-economy model for France

Author

Listed:
  • Fanny Henriet
  • Nicolas Maggiar
  • Schubert, K.

Abstract

We build, calibrate and simulate a stylized energy-economy model designed to evaluate the magnitude of carbon tax that would allow the French economy to reduce by a factor of four its CO2 emissions at a forty-year horizon. We estimate the substitution possibilities between fossil energy and other factors for households and firms. We build two versions of the model, the first with exogenous technical progress, and the second with an endogeneisation of the direction of technical progress. We show that if the energy-saving technical progress rate remains at its recent historical value, the magnitude of the carbon tax is quite unrealistic. When the direction of technical progress responds endogenously to economic incentives, CO2 emissions can be reduced by more than that allowed by the substitution possibilities, but not by a factor of four. To achieve this, an additional instrument is needed, namely a subsidy to fossil energy-saving research. The redirection of technical progress, which is a driver of energy transition, comes at a small cost in terms of the overall growth rate of the economy.

Suggested Citation

  • Fanny Henriet & Nicolas Maggiar & Schubert, K., 2014. "A stylized applied energy-economy model for France," Working papers 478, Banque de France.
  • Handle: RePEc:bfr:banfra:478
    as

    Download full text from publisher

    File URL: https://publications.banque-france.fr/sites/default/files/medias/documents/working-paper_478_2014.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    2. Yann Ménière & Antoine Dechezleprêtre & Matthieu Glachant & Ivan Hascic & N. Johnstone, 2011. "Invention and transfer of climate change mitigation technologies: a study drawing on patent data," Post-Print hal-00869795, HAL.
    3. Smulders, Sjak & de Nooij, Michiel, 2003. "The impact of energy conservation on technology and economic growth," Resource and Energy Economics, Elsevier, vol. 25(1), pages 59-79, February.
    4. Antoine Dechezleprêtre & Matthieu Glachant & Ivan Haščič & Nick Johnstone & Yann Ménière, 2011. "Invention and Transfer of Climate Change--Mitigation Technologies: A Global Analysis," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(1), pages 109-130, Winter.
    5. Patrick Criqui, Peter Russ and Daniel Deybe, 2006. "Impacts of Multi-gas Strategies for Greenhouse Gas Emission Abatement: Insights from a Partial Equilibrium Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 251-274.
    6. Rajeev Dhawan & Karsten Jeske, 2008. "Energy Price Shocks and the Macroeconomy: The Role of Consumer Durables," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(7), pages 1357-1377, October.
    7. Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
    8. Masao Ogaki & Carmen M. Reinhart, 1998. "Measuring Intertemporal Substitution: The Role of Durable Goods," Journal of Political Economy, University of Chicago Press, vol. 106(5), pages 1078-1098, October.
    9. Olivier Sassi & Renaud Crassous & Jean-Charles Hourcade & Vincent Gitz & Henri Waisman & Celine Guivarch, 2010. "IMACLIM-R: a modelling framework to simulate sustainable development pathways," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 10(1/2), pages 5-24.
    10. Gene M. Grossman & Elhanan Helpman, 1993. "Innovation and Growth in the Global Economy," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262570971, December.
    11. van der Werf, Edwin, 2008. "Production functions for climate policy modeling: An empirical analysis," Energy Economics, Elsevier, vol. 30(6), pages 2964-2979, November.
    12. Fernández-Villaverde, Jesús & Krueger, Dirk, 2011. "Consumption And Saving Over The Life Cycle: How Important Are Consumer Durables?," Macroeconomic Dynamics, Cambridge University Press, vol. 15(5), pages 725-770, November.
    13. Adjemian, Stéphane & Bastani, Houtan & Juillard, Michel & Karamé, Fréderic & Maih, Junior & Mihoubi, Ferhat & Mutschler, Willi & Perendia, George & Pfeifer, Johannes & Ratto, Marco & Villemot, Sébasti, 2011. "Dynare: Reference Manual Version 4," Dynare Working Papers 1, CEPREMAP, revised Mar 2021.
    14. Patrick Criqui & Peter Russ & Daniel Deybe, 2006. "Impacts of multi-gas strategies for greenhouse gas emission abatement: insights from a partial equilibrium model," Post-Print halshs-00121488, HAL.
    15. Patrick Fève & Julien Matheron & Jean-Guillaume Sahuc, 2010. "La TVA sociale : bonne ou mauvaise idée ?," Economie & Prévision, La Documentation Française, vol. 0(2), pages 1-19.
    16. Alain L. Bernard & Marc Vielle, 1998. "La structure du modèle GEMINI-E3," Économie et Prévision, Programme National Persée, vol. 136(5), pages 19-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Verónica Acurio Vásconez, 2015. "What if oil is less substitutable? A New-Keynesian Model with Oil, Price and Wage Stickiness including Capital Accumulation," Post-Print halshs-01167027, HAL.
    2. Veronica ACURIO VASCONEZ, 2020. "What if Oil was Less Substitutable?," Working Papers of BETA 2020-08, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    3. Corbier, Darius & Gonand, Frédéric, 2024. "A hybrid electricity-economy model to assess the aggregate impacts of low-carbon transition: An application to France," Ecological Economics, Elsevier, vol. 216(C).
    4. Pascal da Costa & Wenhui Tian, 2015. "A Sectoral Prospective Analysis of CO2 Emissions in China, USA and France, 2010-2050," Working Papers hal-01026302, HAL.
    5. Pascal da Costa, 2014. "Semi-Endogenous Growth and Pollution: No Double Dividend in the Long Term," Working Papers hal-00994904, HAL.
    6. Fanny Henriet & Nicolas Maggiar & Katheline Schubert, 2016. "La France peut-elle atteindre l’objectif du Facteur 4 ? Une évaluation à l’aide d’un modèle stylisé énergie-économie," Economie & Prévision, La Documentation Française, vol. 0(1), pages 1-21.
    7. Antoine Devulder & Noémie Lisack, 2020. "Carbon Tax in a Production Network: Propagation and Sectoral Incidence," Working papers 760, Banque de France.
    8. Fanny Henriet & Yannick Kalantzis & Matthieu Lemoine & Noëmie Lisack & Harri Turunen, 2025. "Bridging the Gap in Macroeconomic Analysis of the Energy Transition: Combining Medium-and Long-Term Approaches," Working papers 1000, Banque de France.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fanny Henriet & Nicolas Maggiar & Katheline Schubert, 2016. "La France peut-elle atteindre l’objectif du Facteur 4 ? Une évaluation à l’aide d’un modèle stylisé énergie-économie," Economie & Prévision, La Documentation Française, vol. 0(1), pages 1-21.
    2. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    3. René Aïd & Mohamed Bahlali & Anna Creti, 2023. "Green innovation downturn: the role of imperfect competition," Post-Print hal-04317679, HAL.
    4. Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.
    5. Mare Sarr & Joëlle Noailly, 2017. "Innovation, Diffusion, Growth and the Environment: Taking Stock and Charting New Directions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 393-407, March.
    6. Hu, Hui & Qi, Shaozhou & Chen, Yuanzhi, 2023. "Using green technology for a better tomorrow: How enterprises and government utilize the carbon trading system and incentive policies," China Economic Review, Elsevier, vol. 78(C).
    7. Derek Lemoine, 2024. "Innovation-Led Transitions in Energy Supply," American Economic Journal: Macroeconomics, American Economic Association, vol. 16(1), pages 29-65, January.
    8. Shiell, Leslie & Lyssenko, Nikita, 2014. "Climate policy and induced R&D: How great is the effect?," Energy Economics, Elsevier, vol. 46(C), pages 279-294.
    9. Burghaus, Kerstin & Funk, Peter, 2013. "Endogenous Growth, Green Innovation and GDP Deceleration in a World with Polluting Production Inputs," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 80022, Verein für Socialpolitik / German Economic Association.
    10. Guillouzouic-Le Corff, Arthur, 2018. "Did oil prices trigger an innovation burst in biofuels?," Energy Economics, Elsevier, vol. 75(C), pages 547-559.
    11. van den Bijgaart, Inge, 2017. "The unilateral implementation of a sustainable growth path with directed technical change," European Economic Review, Elsevier, vol. 91(C), pages 305-327.
    12. Bagayev, Igor & Kogler, Dieter F. & Lochard, Julie, 2025. "Does environmental regulation drive specialisation in green innovation?," Journal of Environmental Economics and Management, Elsevier, vol. 130(C).
    13. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    14. Patricia Laurens & Christian Bas & Antoine Schoen & Stéphane Lhuillery, 2016. "Technological contribution of MNEs to the growth of energy-greentech sector in the early post-Kyoto period," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(2), pages 169-191, April.
    15. repec:spo:wpmain:info:hdl:2441/14g286e42n8bl9is6h16b18kes is not listed on IDEAS
    16. André, Francisco J. & Smulders, Sjak, 2014. "Fueling growth when oil peaks: Directed technological change and the limits to efficiency," European Economic Review, Elsevier, vol. 69(C), pages 18-39.
    17. Carolyn Fischer & Garth Heutel, 2013. "Environmental Macroeconomics: Environmental Policy, Business Cycles, and Directed Technical Change," Annual Review of Resource Economics, Annual Reviews, vol. 5(1), pages 197-210, June.
    18. Lamperti, Francesco & Napoletano, Mauro & Roventini, Andrea, 2020. "Green Transitions And The Prevention Of Environmental Disasters: Market-Based Vs. Command-And-Control Policies," Macroeconomic Dynamics, Cambridge University Press, vol. 24(7), pages 1861-1880, October.
    19. Aïd, René & Bahlali, Mohamed & Creti, Anna, 2023. "Green innovation downturn: The role of imperfect competition," Energy Economics, Elsevier, vol. 123(C).
    20. Zha, Donglan & Kavuri, Anil Savio & Si, Songjian, 2018. "Energy-biased technical change in the Chinese industrial sector with CES production functions," Energy, Elsevier, vol. 148(C), pages 896-903.
    21. Bezin, Emeline, 2019. "The economics of green consumption, cultural transmission and sustainable technological change," Journal of Economic Theory, Elsevier, vol. 181(C), pages 497-546.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bfr:banfra:478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael brassart (email available below). General contact details of provider: https://edirc.repec.org/data/bdfgvfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.