IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.08472.html
   My bibliography  Save this paper

On the Identification of Diagnostic Expectations: Econometric Insights from DSGE Models

Author

Listed:
  • Jinting Guo

Abstract

This paper provides the first econometric evidence for diagnostic expectations (DE) in DSGE models. Using the identification framework of Qu and Tkachenko (2017), I show that DE generate dynamics unreplicable under rational expectations (RE), with no RE parameterization capable of matching the autocovariance implied by DE. Consequently, DE are not observationally equivalent to RE and constitute an endogenous source of macroeconomic fluctuations, distinct from both structural frictions and exogenous shocks. From an econometric perspective, DE preserve overall model identification but weaken the identification of shock variances. To ensure robust conclusions across estimation methods and equilibrium conditions, I extend Bayesian estimation with Sequential Monte Carlo sampling to the indeterminacy domain. These findings advance the econometric study of expectations and highlight the macroeconomic relevance of diagnostic beliefs.

Suggested Citation

  • Jinting Guo, 2025. "On the Identification of Diagnostic Expectations: Econometric Insights from DSGE Models," Papers 2509.08472, arXiv.org, revised Sep 2025.
  • Handle: RePEc:arx:papers:2509.08472
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.08472
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhongjun Qu & Denis Tkachenko, 2017. "Global Identification in DSGE Models Allowing for Indeterminacy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 84(3), pages 1306-1345.
    2. Canova, Fabio & Sala, Luca, 2009. "Back to square one: Identification issues in DSGE models," Journal of Monetary Economics, Elsevier, vol. 56(4), pages 431-449, May.
    3. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models—Rejoinder," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 211-219.
    4. Jean-Paul L’Huillier & Sanjay R Singh & Donghoon Yoo, 2024. "Incorporating Diagnostic Expectations into the New Keynesian Framework," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(5), pages 3013-3046.
    5. Iskrev, Nikolay, 2010. "Local identification in DSGE models," Journal of Monetary Economics, Elsevier, vol. 57(2), pages 189-202, March.
    6. Pedro Bordalo & Nicola Gennaioli & Yueran Ma & Andrei Shleifer, 2020. "Overreaction in Macroeconomic Expectations," American Economic Review, American Economic Association, vol. 110(9), pages 2748-2782, September.
    7. Zhongjun Qu & Denis Tkachenko, 2012. "Identification and frequency domain quasi‐maximum likelihood estimation of linearized dynamic stochastic general equilibrium models," Quantitative Economics, Econometric Society, vol. 3(1), pages 95-132, March.
    8. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    9. Gary Koop & M. Hashem Pesaran & Ron P. Smith, 2013. "On Identification of Bayesian DSGE Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 300-314, July.
    10. Kocięcki, Andrzej & Kolasa, Marcin, 2023. "A solution to the global identification problem in DSGE models," Journal of Econometrics, Elsevier, vol. 236(2).
    11. Michael Cai & Marco Del Negro & Edward Herbst & Ethan Matlin & Reca Sarfati & Frank Schorfheide, 2021. "Online estimation of DSGE models," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 33-58.
    12. Gary Anderson, 2008. "Solving Linear Rational Expectations Models: A Horse Race," Computational Economics, Springer;Society for Computational Economics, vol. 31(2), pages 95-113, March.
    13. Pedro Bordalo & Nicola Gennaioli & Andrei Shleifer, 2018. "Diagnostic Expectations and Credit Cycles," Journal of Finance, American Finance Association, vol. 73(1), pages 199-227, February.
    14. Del Negro, Marco & Schorfheide, Frank, 2008. "Forming priors for DSGE models (and how it affects the assessment of nominal rigidities)," Journal of Monetary Economics, Elsevier, vol. 55(7), pages 1191-1208, October.
    15. Thomas A. Lubik & Frank Schorfheide, 2004. "Testing for Indeterminacy: An Application to U.S. Monetary Policy," American Economic Review, American Economic Association, vol. 94(1), pages 190-217, March.
    16. Ivana Komunjer & Serena Ng, 2011. "Dynamic Identification of Dynamic Stochastic General Equilibrium Models," Econometrica, Econometric Society, vol. 79(6), pages 1995-2032, November.
    17. Edward P. Herbst & Frank Schorfheide, 2016. "Bayesian Estimation of DSGE Models," Economics Books, Princeton University Press, edition 1, number 10612.
    18. Frank Schorfheide, 2008. "DSGE model-based estimation of the New Keynesian Phillips curve," Economic Quarterly, Federal Reserve Bank of Richmond, vol. 94(Fall), pages 397-433.
    19. Jonathon Hazell & Juan Herreño & Emi Nakamura & Jón Steinsson, 2022. "The Slope of the Phillips Curve: Evidence from U.S. States," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 137(3), pages 1299-1344.
    20. Lubik, Thomas A. & Schorfheide, Frank, 2003. "Computing sunspot equilibria in linear rational expectations models," Journal of Economic Dynamics and Control, Elsevier, vol. 28(2), pages 273-285, November.
    21. Edward Herbst & Frank Schorfheide, 2014. "Sequential Monte Carlo Sampling For Dsge Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1073-1098, November.
    22. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
    23. Callum J. Jones & Mariano Kulish & Juan Pablo Nicolini, 2021. "Priors and the Slope of the Phillips Curve," Working Papers 778, Federal Reserve Bank of Minneapolis.
    24. Emi Nakamura & J?n Steinsson, 2014. "Fiscal Stimulus in a Monetary Union: Evidence from US Regions," American Economic Review, American Economic Association, vol. 104(3), pages 753-792, March.
    25. Zhongjun Qu & Denis Tkachenko, 2023. "Using arbitrary precision arithmetic to sharpen identification analysis for DSGE models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 644-667, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kocięcki, Andrzej & Kolasa, Marcin, 2023. "A solution to the global identification problem in DSGE models," Journal of Econometrics, Elsevier, vol. 236(2).
    2. Paccagnini, Alessia, 2017. "Dealing with Misspecification in DSGE Models: A Survey," MPRA Paper 82914, University Library of Munich, Germany.
    3. Zhongjun Qu & Denis Tkachenko, 2023. "Using arbitrary precision arithmetic to sharpen identification analysis for DSGE models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 644-667, June.
    4. Mutschler, Willi, 2018. "Higher-order statistics for DSGE models," Econometrics and Statistics, Elsevier, vol. 6(C), pages 44-56.
    5. Ho, Paul, 2023. "Global robust Bayesian analysis in large models," Journal of Econometrics, Elsevier, vol. 235(2), pages 608-642.
    6. Ivashchenko, Sergey & Mutschler, Willi, 2020. "The effect of observables, functional specifications, model features and shocks on identification in linearized DSGE models," Economic Modelling, Elsevier, vol. 88(C), pages 280-292.
    7. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    8. Raffaella Giacomini, 2013. "The relationship between DSGE and VAR models," CeMMAP working papers CWP21/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Zhongjun Qu, 2018. "A Composite Likelihood Framework for Analyzing Singular DSGE Models," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 916-932, December.
    10. Josué Diwambuena & Raquel Fonseca & Stefan Schubert, 2021. "Italian Labour Frictions and Wage Rigidities in an Estimated DSGE," BEMPS - Bozen Economics & Management Paper Series BEMPS88, Faculty of Economics and Management at the Free University of Bozen.
    11. Morris, Stephen D., 2017. "DSGE pileups," Journal of Economic Dynamics and Control, Elsevier, vol. 74(C), pages 56-86.
    12. Giovanni Angelini & Luca Fanelli & Marco M. Sorge, 2025. "Is Time an Illusion? A Bootstrap Likelihood Ratio Test for Shock Transmission Delays in DSGE Models," Computational Economics, Springer;Society for Computational Economics, vol. 65(5), pages 2477-2503, May.
    13. Mutschler, Willi, 2015. "Identification of DSGE models—The effect of higher-order approximation and pruning," Journal of Economic Dynamics and Control, Elsevier, vol. 56(C), pages 34-54.
    14. Pedro Chaim & Márcio Poletti Laurini, 2022. "Data Cloning Estimation and Identification of a Medium-Scale DSGE Model," Stats, MDPI, vol. 6(1), pages 1-13, December.
    15. Benchimol, Jonathan & Bounader, Lahcen & Dotta, Mario, 2025. "Estimating Behavioral Inattention," Journal of Economic Behavior & Organization, Elsevier, vol. 236(C).
    16. Benchimol, Jonathan & Bounader, Lahcen, 2023. "Optimal monetary policy under bounded rationality," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 67, pages 1-25.
    17. Chatelain, Jean-Bernard & Ralf, Kirsten, 2018. "Publish and Perish: Creative Destruction and Macroeconomic Theory," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 46(2), pages 65-101.
    18. Zadrozny, Peter A., 2022. "Linear identification of linear rational-expectations models by exogenous variables reconciles Lucas and Sims," CFS Working Paper Series 682, Center for Financial Studies (CFS).
    19. Giovanni Angelini & Giuseppe Cavaliere & Luca Fanelli, 2022. "Bootstrap inference and diagnostics in state space models: With applications to dynamic macro models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 3-22, January.
    20. Claire A. Reicher, 2016. "A Note on the Identification of Dynamic Economic Models with Generalized Shock Processes," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(3), pages 412-423, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.08472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.