IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2406.14145.html
   My bibliography  Save this paper

Temperature in the Iberian Peninsula: Trend, seasonality, and heterogeneity

Author

Listed:
  • C. Vladimir Rodr'iguez-Caballero
  • Esther Ruiz

Abstract

In this paper, we propose fitting unobserved component models to represent the dynamic evolution of bivariate systems of centre and log-range temperatures obtained monthly from minimum/maximum temperatures observed at a given location. In doing so, the centre and log-range temperature are decomposed into potentially stochastic trends, seasonal, and transitory components. Since our model encompasses deterministic trends and seasonal components as limiting cases, we contribute to the debate on whether stochastic or deterministic components better represent the trend and seasonal components. The methodology is implemented to centre and log-range temperature observed in four locations in the Iberian Peninsula, namely, Barcelona, Coru\~{n}a, Madrid, and Seville. We show that, at each location, the centre temperature can be represented by a smooth integrated random walk with time-varying slope, while a stochastic level better represents the log-range. We also show that centre and log-range temperature are unrelated. The methodology is then extended to simultaneously model centre and log-range temperature observed at several locations in the Iberian Peninsula. We fit a multi-level dynamic factor model to extract potential commonalities among centre (log-range) temperature while also allowing for heterogeneity in different areas in the Iberian Peninsula. We show that, although the commonality in trends of average temperature is considerable, the regional components are also relevant.

Suggested Citation

  • C. Vladimir Rodr'iguez-Caballero & Esther Ruiz, 2024. "Temperature in the Iberian Peninsula: Trend, seasonality, and heterogeneity," Papers 2406.14145, arXiv.org.
  • Handle: RePEc:arx:papers:2406.14145
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2406.14145
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harvey, Andrew, 2001. "Testing in Unobserved Components Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(1), pages 1-19, January.
    2. Phillips, Peter C.B., 2005. "Challenges of trending time series econometrics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 68(5), pages 401-416.
    3. Holt, Matthew T. & Teräsvirta, Timo, 2020. "Global hemispheric temperatures and co-shifting: A vector shifting-mean autoregressive analysis," Journal of Econometrics, Elsevier, vol. 214(1), pages 198-215.
    4. Simona Delle Chiaie & Laurent Ferrara & Domenico Giannone, 2022. "Common factors of commodity prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 461-476, April.
    5. Kim, Dukpa & Oka, Tatsushi & Estrada, Francisco & Perron, Pierre, 2020. "Inference related to common breaks in a multivariate system with joined segmented trends with applications to global and hemispheric temperatures," Journal of Econometrics, Elsevier, vol. 214(1), pages 130-152.
    6. Manuel G. Scotto & Susana M. Barbosa & Andr�s M. Alonso, 2011. "Extreme value and cluster analysis of European daily temperature series," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(12), pages 2793-2804, March.
    7. Chang, Yoosoon & Kaufmann, Robert K. & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y. & Park, Sungkeun, 2020. "Evaluating trends in time series of distributions: A spatial fingerprint of human effects on climate," Journal of Econometrics, Elsevier, vol. 214(1), pages 274-294.
    8. Sean D. Campbell & Francis X. Diebold, 2005. "Weather Forecasting for Weather Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 6-16, March.
    9. Robert K. Kaufmann & David I. Stern, 1997. "Evidence for human influence on climate from hemispheric temperature relations," Nature, Nature, vol. 388(6637), pages 39-44, July.
    10. Helske, Jouni, 2017. "KFAS: Exponential Family State Space Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 78(i10).
    11. Tommaso Proietti & Eric Hillebrand, 2017. "Seasonal changes in central England temperatures," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 769-791, June.
    12. Solomon Hsiang & Robert E. Kopp, 2018. "An Economist's Guide to Climate Change Science," Journal of Economic Perspectives, American Economic Association, vol. 32(4), pages 3-32, Fall.
    13. Gloria Gonzalez‐Rivera & Yun Luo & Esther Ruiz, 2020. "Prediction regions for interval‐valued time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 373-390, June.
    14. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    15. Phella, Anthoulla & Gabriel, Vasco J. & Martins, Luis F., 2024. "Predicting tail risks and the evolution of temperatures," Energy Economics, Elsevier, vol. 131(C).
    16. Friedrich, Marina & Smeekes, Stephan & Urbain, Jean-Pierre, 2020. "Autoregressive wild bootstrap inference for nonparametric trends," Journal of Econometrics, Elsevier, vol. 214(1), pages 81-109.
    17. Debbie J. Dupuis, 2012. "Modeling Waves of Extreme Temperature: The Changing Tails of Four Cities," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 24-39, March.
    18. Baillie, Richard T. & Chung, Sang-Kuck, 2002. "Modeling and forecasting from trend-stationary long memory models with applications to climatology," International Journal of Forecasting, Elsevier, vol. 18(2), pages 215-226.
    19. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    20. Irma Hindrayanto & John A.D. Aston & Siem Jan Koopman & Marius Ooms, 2013. "Modelling trigonometric seasonal components for monthly economic time series," Applied Economics, Taylor & Francis Journals, vol. 45(21), pages 3024-3034, July.
    21. Gadea Rivas, María Dolores & Gonzalo, Jesús & Ramos, Andrey, 2023. "Trends in temperature data: micro-foundations of their nature," UC3M Working papers. Economics 39045, Universidad Carlos III de Madrid. Departamento de Economía.
    22. Luis A. Gil-Alana, 2008. "Time trend estimation with breaks in temperature time series," Faculty Working Papers 09/08, School of Economics and Business Administration, University of Navarra.
    23. Jiti Gao & Kim Hawthorne, 2006. "Semiparametric estimation and testing of the trend of temperature series," Econometrics Journal, Royal Economic Society, vol. 9(2), pages 332-355, July.
    24. B. Bhaskara Rao, 2010. "Deterministic and stochastic trends in the time series models: a guide for the applied economist," Applied Economics, Taylor & Francis Journals, vol. 42(17), pages 2193-2202.
    25. Zhuo Wang & Yujing Jiang & Hui Wan & Jun Yan & Xuebin Zhang, 2021. "Toward Optimal Fingerprinting in Detection and Attribution of Changes in Climate Extremes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(533), pages 1-13, March.
    26. Diebold, Francis X & Senhadji, Abdelhak S, 1996. "The Uncertain Unit Root in Real GNP: Comment," American Economic Review, American Economic Association, vol. 86(5), pages 1291-1298, December.
    27. Pierre Perron & Eduardo Zorita & Francisco Estrada & Pierre Perron, 2017. "Extracting and Analyzing the Warming Trend in Global and Hemispheric Temperatures," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(5), pages 711-732, September.
    28. Jushan Bai & Serena Ng, 2005. "Tests for Skewness, Kurtosis, and Normality for Time Series Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 49-60, January.
    29. Robert Kaufmann & Heikki Kauppi & Michael Mann & James Stock, 2013. "Does temperature contain a stochastic trend: linking statistical results to physical mechanisms," Climatic Change, Springer, vol. 118(3), pages 729-743, June.
    30. María Dolores Gadea Rivas & Jesús Gonzalo, 2022. "A tale of three cities: climate heterogeneity," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 13(1), pages 475-511, May.
    31. Chen, Li & Gao, Jiti & Vahid, Farshid, 2022. "Global temperatures and greenhouse gases: A common features approach," Journal of Econometrics, Elsevier, vol. 230(2), pages 240-254.
    32. Harvey, A C & Jaeger, A, 1993. "Detrending, Stylized Facts and the Business Cycle," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(3), pages 231-247, July-Sept.
    33. Terence C. Mills & David I. Harvey, 2003. "Modelling trends in central England temperatures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(1), pages 35-47.
    34. Francisco Estrada & Pierre Perron & Benjamin Martinez-Lopez, 2013. "Statistically-derived contributions of diverse human influences to 20th century temperature changes," Boston University - Department of Economics - Working Papers Series 2013-017, Boston University - Department of Economics.
    35. Lisa Zaval & Elizabeth A. Keenan & Eric J. Johnson & Elke U. Weber, 2014. "How warm days increase belief in global warming," Nature Climate Change, Nature, vol. 4(2), pages 143-147, February.
    36. Harvey, Andrew, 1997. "Trends, Cycles and Autoregressions," Economic Journal, Royal Economic Society, vol. 107(440), pages 192-201, January.
    37. Rodríguez-Caballero, Carlos Vladimir & Caporin, Massimiliano, 2019. "A multilevel factor approach for the analysis of CDS commonality and risk contribution," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 63(C).
    38. Gadea Rivas, María Dolores & Gonzalo, Jesús, 2020. "Trends in distributional characteristics: Existence of global warming," Journal of Econometrics, Elsevier, vol. 214(1), pages 153-174.
    39. Manveer Kaur Mangat & Erhard Reschenhofer, 2020. "Frequency-Domain Evidence for Climate Change," Econometrics, MDPI, vol. 8(3), pages 1-15, July.
    40. Meng, Xiaochun & Taylor, James W., 2022. "Comparing probabilistic forecasts of the daily minimum and maximum temperature," International Journal of Forecasting, Elsevier, vol. 38(1), pages 267-281.
    41. Felix Pretis & Michael Mann & Robert Kaufmann, 2015. "Testing competing models of the temperature hiatus: assessing the effects of conditioning variables and temporal uncertainties through sample-wide break detection," Climatic Change, Springer, vol. 131(4), pages 705-718, August.
    42. Daniel Ventosa-Santaulària & David R Heres & L Catalina Martínez-Hernández, 2014. "Long-Memory and the Sea Level-Temperature Relationship: A Fractional Cointegration Approach," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-12, November.
    43. Iselin Medhaug & Martin B. Stolpe & Erich M. Fischer & Reto Knutti, 2017. "Reconciling controversies about the ‘global warming hiatus’," Nature, Nature, vol. 545(7652), pages 41-47, May.
    44. Marina Friedrich & Eric Beutner & Hanno Reuvers & Stephan Smeekes & Jean-Pierre Urbain & Whitney Bader & Bruno Franco & Bernard Lejeune & Emmanuel Mahieu, 2020. "A statistical analysis of time trends in atmospheric ethane," Climatic Change, Springer, vol. 162(1), pages 105-125, September.
    45. Peter C. B. Phillips, 2010. "The Mysteries of Trend," Cowles Foundation Discussion Papers 1771, Cowles Foundation for Research in Economics, Yale University.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González-Rivera, Gloria & Rodríguez Caballero, Carlos Vladimir & Ruiz Ortega, Esther, 2023. "Modelling intervals of minimum/maximum temperatures in the Iberian Peninsula," DES - Working Papers. Statistics and Econometrics. WS 37968, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Chen, Li & Gao, Jiti & Vahid, Farshid, 2022. "Global temperatures and greenhouse gases: A common features approach," Journal of Econometrics, Elsevier, vol. 230(2), pages 240-254.
    3. Claudio, Morana & Giacomo, Sbrana, 2017. "Some Financial Implications of Global Warming: An Empirical Assessment," Working Papers 377, University of Milano-Bicocca, Department of Economics, revised 25 Dec 2017.
    4. Claudio Morana & Giacomo Sbrana, 2017. "Temperature Anomalies, Radiative Forcing and ENSO," Working Papers 2017.09, Fondazione Eni Enrico Mattei.
    5. Phella, Anthoulla & Gabriel, Vasco J. & Martins, Luis F., 2024. "Predicting tail risks and the evolution of temperatures," Energy Economics, Elsevier, vol. 131(C).
    6. Claudio, Morana & Giacomo, Sbrana, 2017. "Some Financial Implications of Global Warming: An Empirical Assessment," Working Papers 377, University of Milano-Bicocca, Department of Economics, revised 25 Dec 2017.
    7. Liang Chen & Juan J. Dolado & Jesús Gonzalo & Andrey Ramos, 2023. "Heterogeneous predictive association of CO2 with global warming," Economica, London School of Economics and Political Science, vol. 90(360), pages 1397-1421, October.
    8. De Juan Fernández, Aránzazu & Poncela, Pilar & Rodríguez Caballero, Carlos Vladimir & Ruiz Ortega, Esther, 2022. "Economic activity and climate change," DES - Working Papers. Statistics and Econometrics. WS 35044, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. Yu, Deshui & Huang, Difang & Chen, Li, 2023. "Stock return predictability and cyclical movements in valuation ratios," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 36-53.
    10. Francisco Estrada & Pierre Perron, 2019. "Breaks, Trends and the Attribution of Climate Change: A Time-Series Analysis," Revista Economía, Fondo Editorial - Pontificia Universidad Católica del Perú, vol. 42(83), pages 1-31.
    11. Gadea Rivas, María Dolores & Gonzalo, Jesús, 2020. "Trends in distributional characteristics: Existence of global warming," Journal of Econometrics, Elsevier, vol. 214(1), pages 153-174.
    12. Francisco Estrada & Luis Filipe Martins & Pierre Perron, 2017. "Characterizing and attributing the warming trend in sea and land surface temperatures," Boston University - Department of Economics - Working Papers Series WP2017-009, Boston University - Department of Economics.
    13. Gadea Rivas, María Dolores & Gonzalo, Jesús & Ramos, Andrey, 2023. "Trends in temperature data: micro-foundations of their nature," UC3M Working papers. Economics 39045, Universidad Carlos III de Madrid. Departamento de Economía.
    14. Bruns, Stephan B. & Csereklyei, Zsuzsanna & Stern, David I., 2020. "A multicointegration model of global climate change," Journal of Econometrics, Elsevier, vol. 214(1), pages 175-197.
    15. Chang, Yoosoon & Kaufmann, Robert K. & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y. & Park, Sungkeun, 2020. "Evaluating trends in time series of distributions: A spatial fingerprint of human effects on climate," Journal of Econometrics, Elsevier, vol. 214(1), pages 274-294.
    16. Morana, Claudio & Sbrana, Giacomo, 2019. "Climate change implications for the catastrophe bonds market: An empirical analysis," Economic Modelling, Elsevier, vol. 81(C), pages 274-294.
    17. Kyungsik Nam, 2021. "Nonlinear Cointegrating Regression of the Earth’s Surface Mean Temperature Anomalies on Total Radiative Forcing," Econometrics, MDPI, vol. 9(1), pages 1-25, February.
    18. Maravall, A. & del Rio, A., 2007. "Temporal aggregation, systematic sampling, and the Hodrick-Prescott filter," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 975-998, October.
    19. Kim, Dukpa & Oka, Tatsushi & Estrada, Francisco & Perron, Pierre, 2020. "Inference related to common breaks in a multivariate system with joined segmented trends with applications to global and hemispheric temperatures," Journal of Econometrics, Elsevier, vol. 214(1), pages 130-152.
    20. Jiao, Xiyu & Pretis, Felix & Schwarz, Moritz, 2024. "Testing for coefficient distortion due to outliers with an application to the economic impacts of climate change," Journal of Econometrics, Elsevier, vol. 239(1).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2406.14145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.