IDEAS home Printed from https://ideas.repec.org/p/zbw/cegedp/336.html
   My bibliography  Save this paper

A multicointegration model of global climate change

Author

Listed:
  • Bruns, Stephan B.
  • Csereklyei, Zsuzsanna
  • Stern, David I.

Abstract

We model the role of the ocean in climate change, using the concept of multicointegration. Surface temperature and radiative forcing cointegrate and the accumulated cointegration disequilibria represent the change in Earth system heat content, which is predominantly stored in the ocean. System heat content in turn cointegrates with surface temperature. Using a multicointegrating I(2) model, we find that the climate sensitivity is 2.8°C and the rate of adjustment to equilibrium is realistically slow. These results contrast strongly with those from I(1) cointegration models and are more consistent with global circulation models. We also estimate Earth system heat content as a latent variable for the full period, 1850-2014, and this predicted heat content cointegrates with available ocean heat content observations for 1940-2014.

Suggested Citation

  • Bruns, Stephan B. & Csereklyei, Zsuzsanna & Stern, David I., 2018. "A multicointegration model of global climate change," Center for European, Governance and Economic Development Research Discussion Papers 336, University of Goettingen, Department of Economics.
  • Handle: RePEc:zbw:cegedp:336
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/173787/1/1012324591.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Perron, Pierre & Wada, Tatsuma, 2009. "Let's take a break: Trends and cycles in US real GDP," Journal of Monetary Economics, Elsevier, vol. 56(6), pages 749-765, September.
    2. Onatski, Alexei & Uhlig, Harald, 2012. "Unit Roots In White Noise," Econometric Theory, Cambridge University Press, vol. 28(3), pages 485-508, June.
    3. Engsted, Tom & Haldrup, Niels, 1999. "Multicointegration in Stock-Flow Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(2), pages 237-254, May.
    4. Kaufmann, R. K. & Kauppi, H. & Mann, M. L. & Stock, James H., 2011. "Reconciling anthropogenic climate change with observed temperature 1998–2008," Scholarly Articles 29071926, Harvard University Department of Economics.
    5. Clive W. J. Granger & Yongil Jeon, 2006. "Dynamics of Model Overfitting Measured in terms of Autoregressive Roots," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(3), pages 347-365, May.
    6. Jurgen A. Doornik, 1998. "Approximations To The Asymptotic Distributions Of Cointegration Tests," Journal of Economic Surveys, Wiley Blackwell, vol. 12(5), pages 573-593, December.
    7. P. C. B. Phillips & S. N. Durlauf, 1986. "Multiple Time Series Regression with Integrated Processes," Review of Economic Studies, Oxford University Press, vol. 53(4), pages 473-495.
    8. Granger, C W J & Lee, T H, 1989. "Investigation of Production, Sales and Inventory Relationships Using Multicointegration and Non-symmetric Error Correction Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 4(S), pages 145-159, Supplemen.
    9. Robert Kaufmann & Heikki Kauppi & Michael Mann & James Stock, 2013. "Does temperature contain a stochastic trend: linking statistical results to physical mechanisms," Climatic Change, Springer, vol. 118(3), pages 729-743, June.
    10. Stock, James H & Watson, Mark W, 1993. "A Simple Estimator of Cointegrating Vectors in Higher Order Integrated Systems," Econometrica, Econometric Society, vol. 61(4), pages 783-820, July.
    11. Mohitosh Kejriwal & Claude Lopez, 2013. "Unit Roots, Level Shifts, and Trend Breaks in Per Capita Output: A Robust Evaluation," Econometric Reviews, Taylor & Francis Journals, vol. 32(8), pages 892-927, November.
    12. David O. Cushman, 2016. "A Unit Root in Postwar U.S. Real GDP Still Cannot Be Rejected, and Yes, It Matters," Econ Journal Watch, Econ Journal Watch, vol. 13(1), pages 1-5–45, January.
    13. Felix Pretis, 2015. "Econometric Models of Climate Systems: The Equivalence of Two-Component Energy Balance Models and Cointegrated VARs," Economics Series Working Papers 750, University of Oxford, Department of Economics.
    14. Felix Pretis & Michael Mann & Robert Kaufmann, 2015. "Testing competing models of the temperature hiatus: assessing the effects of conditioning variables and temporal uncertainties through sample-wide break detection," Climatic Change, Springer, vol. 131(4), pages 705-718, August.
    15. Edgerton, David & Wells, Curt, 1994. "Critical Values for the Cusumsq Statistic in Medium and Large Sized Samples," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 56(3), pages 355-365, August.
    16. Achim Zeileis, 2004. "Alternative boundaries for CUSUM tests," Statistical Papers, Springer, vol. 45(1), pages 123-131, January.
    17. Dergiades, Theologos & Kaufmann, Robert K. & Panagiotidis, Theodore, 2016. "Long-run changes in radiative forcing and surface temperature: The effect of human activity over the last five centuries," Journal of Environmental Economics and Management, Elsevier, vol. 76(C), pages 67-85.
    18. Boriss Siliverstovs, 2006. "Multicointegration in US consumption data," Applied Economics, Taylor & Francis Journals, vol. 38(7), pages 819-833.
    19. David Stern & Robert Kaufmann, 2014. "Anthropogenic and natural causes of climate change," Climatic Change, Springer, vol. 122(1), pages 257-269, January.
    20. Kongsted, Hans Christian, 2005. "Testing the nominal-to-real transformation," Journal of Econometrics, Elsevier, vol. 124(2), pages 205-225, February.
    21. Jurgen A. Doornik, 1998. "Approximations To The Asymptotic Distributions Of Cointegration Tests," Journal of Economic Surveys, Wiley Blackwell, vol. 12(5), pages 573-593, December.
    22. Hans Christian Kongsted & Heino Bohn Nielsen, 2004. "Analysing I(2) Systems by Transformed Vector Autoregressions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(3), pages 379-397, July.
    23. Rappoport, Peter & Reichlin, Lucrezia, 1989. "Segmented Trends and Non-stationary Time Series," Economic Journal, Royal Economic Society, vol. 99(395), pages 168-177, Supplemen.
    24. Rahbek, Anders & Christian Kongsted, Hans & Jorgensen, Clara, 1999. "Trend stationarity in the I(2) cointegration model," Journal of Econometrics, Elsevier, vol. 90(2), pages 265-289, June.
    25. Boswijk, H. Peter, 2010. "Mixed Normal Inference On Multicointegration," Econometric Theory, Cambridge University Press, vol. 26(5), pages 1565-1576, October.
    26. Pierre Perron & Eduardo Zorita & Francisco Estrada & Pierre Perron, 2017. "Extracting and Analyzing the Warming Trend in Global and Hemispheric Temperatures," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(5), pages 711-732, September.
    27. Vanessa Berenguer‐Rico & Josep Lluís Carrion‐i‐Silvestre, 2011. "Regime shifts in stock–flow I(2)–I(1) systems: the case of US fiscal sustainability," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(2), pages 298-321, March.
    28. Francisco Estrada & Pierre Perron & Benjamin Martinez-Lopez, 2013. "Statistically-derived contributions of diverse human influences to 20th century temperature changes," Boston University - Department of Economics - Working Papers Series 2013-017, Boston University - Department of Economics.
    29. Gonzalo, Jesus, 1994. "Five alternative methods of estimating long-run equilibrium relationships," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 203-233.
    30. Phillips, Peter C B & Ouliaris, S, 1990. "Asymptotic Properties of Residual Based Tests for Cointegration," Econometrica, Econometric Society, vol. 58(1), pages 165-193, January.
    31. James A. Duffy & David F. Hendry, 2017. "The impact of integrated measurement errors on modeling long-run macroeconomic time series," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 568-587, October.
    32. Pretis, Felix, 2020. "Econometric modelling of climate systems: The equivalence of energy balance models and cointegrated vector autoregressions," Journal of Econometrics, Elsevier, vol. 214(1), pages 256-273.
    33. Johansen, Søren, 1992. "A Representation of Vector Autoregressive Processes Integrated of Order 2," Econometric Theory, Cambridge University Press, vol. 8(2), pages 188-202, June.
    34. David Hendry & Felix Pretis, 2013. "Some Fallacies in Econometric Modelling of Climate Change," Economics Series Working Papers 643, University of Oxford, Department of Economics.
    35. Hassler, Uwe, 2007. "Multicointegration under measurement errors," Economics Letters, Elsevier, vol. 96(1), pages 38-44, July.
    36. James G. MacKinnon, 2010. "Critical Values For Cointegration Tests," Working Paper 1227, Economics Department, Queen's University.
    Full references (including those not matched with items on IDEAS)

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. Abandoning a Paper
      by noreply@blogger.com (David Stern) in Stochastic Trend on 2020-08-05 00:26:00
    2. Annual Review 2020
      by noreply@blogger.com (David Stern) in Stochastic Trend on 2020-12-19 07:18:00
    3. Annual Review 2018
      by noreply@blogger.com (David Stern) in Stochastic Trend on 2018-12-23 02:35:00
    4. Annual Review 2019
      by noreply@blogger.com (David Stern) in Stochastic Trend on 2019-12-25 00:24:00
    5. Annual Review 2020
      by noreply@blogger.com (David Stern) in Stochastic Trend on 2020-12-19 07:18:00
    6. A Multicointegration Model of Global Climate Change
      by noreply@blogger.com (David Stern) in Stochastic Trend on 2018-02-10 07:11:00

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wagner, Gernot & Weitzman, Martin L., 2018. "Potentially large equilibrium climate sensitivity tail uncertainty," Economics Letters, Elsevier, vol. 168(C), pages 144-146.
    2. Pretis, Felix, 2020. "Econometric modelling of climate systems: The equivalence of energy balance models and cointegrated vector autoregressions," Journal of Econometrics, Elsevier, vol. 214(1), pages 256-273.
    3. Eric Hillebrand & Søren Johansen & Torben Schmith, 2020. "Data Revisions and the Statistical Relation of Global Mean Sea Level and Surface Temperature," Econometrics, MDPI, Open Access Journal, vol. 8(4), pages 1-19, November.
    4. Philippe Goulet Coulombe & Maximilian Gobel, 2021. "On Spurious Causality, CO2, and Global Temperature," Papers 2103.10605, arXiv.org.
    5. Giselle Montamat & James H. Stock, 2020. "Quasi-experimental estimates of the transient climate response using observational data," Climatic Change, Springer, vol. 160(3), pages 361-371, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gomez-Biscarri, Javier & Hualde, Javier, 2015. "A residual-based ADF test for stationary cointegration in I(2) settings," Journal of Econometrics, Elsevier, vol. 184(2), pages 280-294.
    2. Paolo Paruolo & Rocco Mosconi, 2010. "Identification of cointegrating relations in I(2) vector autoregressive models," Economics and Quantitative Methods qf1007, Department of Economics, University of Insubria.
    3. Vanessa Berenguer‐Rico & Josep Lluís Carrion‐i‐Silvestre, 2006. "Testing for Multicointegration in Panel Data with Common Factors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(s1), pages 721-739, December.
    4. Hans Christian Kongsted & Heino Bohn Nielsen, 2004. "Analysing I(2) Systems by Transformed Vector Autoregressions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(3), pages 379-397, July.
    5. Guillaume Chevillon, 2017. "Robust cointegration testing in the presence of weak trends, with an application to the human origin of global warming," Econometric Reviews, Taylor & Francis Journals, vol. 36(5), pages 514-545, May.
    6. Kurita, Takamitsu, 2020. "Likelihood-based tests for parameter constancy in I(2) CVAR models with an application to fixed-term deposit data," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    7. Johansen, Søren & Juselius, Katarina & Frydman, Roman & Goldberg, Michael, 2010. "Testing hypotheses in an I(2) model with piecewise linear trends. An analysis of the persistent long swings in the Dmk/$ rate," Journal of Econometrics, Elsevier, vol. 158(1), pages 117-129, September.
    8. Assenmacher-Wesche, Katrin & Beyer, Andreas, 2019. "A cointegration model of money and wealth," CFS Working Paper Series 619, Center for Financial Studies (CFS).
    9. Mosconi, Rocco & Paruolo, Paolo, 2014. "Rank and order conditions for identification in simultaneous system of cointegrating equations with integrated variables of order two," MPRA Paper 53589, University Library of Munich, Germany.
    10. Phillips, Peter C.B. & Leirvik, Thomas & Storelvmo, Trude, 2020. "Econometric estimates of Earth’s transient climate sensitivity," Journal of Econometrics, Elsevier, vol. 214(1), pages 6-32.
    11. Matteo Mogliani, 2010. "Residual-based tests for cointegration and multiple deterministic structural breaks: A Monte Carlo study," Working Papers halshs-00564897, HAL.
    12. Neil R. Ericsson & James G. MacKinnon, 2002. "Distributions of error correction tests for cointegration," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 285-318, June.
    13. Tom Engsted & Niels Haldrup & Boriss Siliverstovs, 2004. "Long-run forecasting in multicointegrated systems," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(5), pages 315-335.
    14. Boriss Siliverstovs, 2006. "Multicointegration in US consumption data," Applied Economics, Taylor & Francis Journals, vol. 38(7), pages 819-833.
    15. Norah Al-Ballaa, 2005. "Test for cointegration based on two-stage least squares," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(7), pages 707-713.
    16. Pretis, Felix, 2021. "Exogeneity in climate econometrics," Energy Economics, Elsevier, vol. 96(C).
    17. Minxian, Yang, 1998. "System estimators of cointegrating matrix in absence of normalising information," Journal of Econometrics, Elsevier, vol. 85(2), pages 317-337, August.
    18. Robert Amano & Tony S. Wirjanto, "undated". "A Further Analysis of Exchange Rate Targeting in Canada," Staff Working Papers 94-2, Bank of Canada.
    19. Jurgen A. Doornik & Rocco Mosconi & Paolo Paruolo, 2017. "Formula I(1) and I(2): Race Tracks for Likelihood Maximization Algorithms of I(1) and I(2) Cointegrated VAR Models," Econometrics, MDPI, Open Access Journal, vol. 5(4), pages 1-30, November.
    20. Felix Pretis & Lea Schneider & Jason E. Smerdon & David F. Hendry, 2016. "Detecting Volcanic Eruptions In Temperature Reconstructions By Designed Break-Indicator Saturation," Journal of Economic Surveys, Wiley Blackwell, vol. 30(3), pages 403-429, July.

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cegedp:336. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - Leibniz Information Centre for Economics). General contact details of provider: https://edirc.repec.org/data/cdgoede.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.