IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1903.05403.html
   My bibliography  Save this paper

A statistical analysis of time trends in atmospheric ethane

Author

Listed:
  • Marina Friedrich
  • Eric Beutner
  • Hanno Reuvers
  • Stephan Smeekes
  • Jean-Pierre Urbain
  • Whitney Bader
  • Bruno Franco
  • Bernard Lejeune
  • Emmanuel Mahieu

Abstract

Ethane is the most abundant non-methane hydrocarbon in the Earth's atmosphere and an important precursor of tropospheric ozone through various chemical pathways. Ethane is also an indirect greenhouse gas (global warming potential), influencing the atmospheric lifetime of methane through the consumption of the hydroxyl radical (OH). Understanding the development of trends and identifying trend reversals in atmospheric ethane is therefore crucial. Our dataset consists of four series of daily ethane columns obtained from ground-based FTIR measurements. As many other decadal time series, our data are characterized by autocorrelation, heteroskedasticity, and seasonal effects. Additionally, missing observations due to instrument failure or unfavorable measurement conditions are common in such series. The goal of this paper is therefore to analyze trends in atmospheric ethane with statistical tools that correctly address these data features. We present selected methods designed for the analysis of time trends and trend reversals. We consider bootstrap inference on broken linear trends and smoothly varying nonlinear trends. In particular, for the broken trend model, we propose a bootstrap method for inference on the break location and the corresponding changes in slope. For the smooth trend model we construct simultaneous confidence bands around the nonparametrically estimated trend. Our autoregressive wild bootstrap approach, combined with a seasonal filter, is able to handle all issues mentioned above.

Suggested Citation

  • Marina Friedrich & Eric Beutner & Hanno Reuvers & Stephan Smeekes & Jean-Pierre Urbain & Whitney Bader & Bruno Franco & Bernard Lejeune & Emmanuel Mahieu, 2019. "A statistical analysis of time trends in atmospheric ethane," Papers 1903.05403, arXiv.org, revised Jun 2020.
  • Handle: RePEc:arx:papers:1903.05403
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1903.05403
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Wei Biao Wu & Zhibiao Zhao, 2007. "Inference of trends in time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 391-410, June.
    2. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    3. Friedrich, Marina & Smeekes, Stephan & Urbain, Jean-Pierre, 2020. "Autoregressive wild bootstrap inference for nonparametric trends," Journal of Econometrics, Elsevier, vol. 214(1), pages 81-109.
    4. Ross R. McKitrick & Timothy J. Vogelsang, 2014. "HAC robust trend comparisons among climate series with possible level shifts," Environmetrics, John Wiley & Sons, Ltd., vol. 25(7), pages 528-547, November.
    5. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    6. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    7. Chetverikov, Denis, 2019. "Testing Regression Monotonicity In Econometric Models," Econometric Theory, Cambridge University Press, vol. 35(4), pages 729-776, August.
    8. Isobel J. Simpson & Mads P. Sulbaek Andersen & Simone Meinardi & Lori Bruhwiler & Nicola J. Blake & Detlev Helmig & F. Sherwood Rowland & Donald R. Blake, 2012. "Long-term decline of global atmospheric ethane concentrations and implications for methane," Nature, Nature, vol. 488(7412), pages 490-494, August.
    9. Ting Zhang & Wei Biao Wu, 2011. "Testing parametric assumptions of trends of a nonstationary time series," Biometrika, Biometrika Trust, vol. 98(3), pages 599-614.
    10. Kapetanios, George, 2008. "Bootstrap-based tests for deterministic time-varying coefficients in regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 534-545, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenxin Zhang & Xuan Zhang & Bryce W. Edwards & Lei Zhong & Huajian Gao & Michael J. Malaska & Robert Hodyss & Julia R. Greer, 2022. "Deformation characteristics of solid-state benzene as a step towards understanding planetary geology," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. González-Rivera, Gloria & Rodríguez Caballero, Carlos Vladimir & Ruiz Ortega, Esther, 2023. "Modelling intervals of minimum/maximum temperatures in the Iberian Peninsula," DES - Working Papers. Statistics and Econometrics. WS 37968, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Yicong Lin & Mingxuan Song, 2023. "Robust bootstrap inference for linear time-varying coefficient models: Some Monte Carlo evidence," Tinbergen Institute Discussion Papers 23-049/III, Tinbergen Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Casini & Pierre Perron, 2021. "Change-Point Analysis of Time Series with Evolutionary Spectra," Papers 2106.02031, arXiv.org, revised Jun 2021.
    2. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    3. Alaa Abi Morshed & Elena Andreou & Otilia Boldea, 2018. "Structural Break Tests Robust to Regression Misspecification," Econometrics, MDPI, vol. 6(2), pages 1-39, May.
    4. Dewan, Ambuj & Neligh, Nathaniel, 2020. "Estimating information cost functions in models of rational inattention," Journal of Economic Theory, Elsevier, vol. 187(C).
    5. Fatum, Rasmus & Hattori, Takahiro & Yamamoto, Yohei, 2023. "Reserves and risk: Evidence from China," Journal of International Money and Finance, Elsevier, vol. 134(C).
    6. Fu, Zhonghao & Hong, Yongmiao, 2019. "A model-free consistent test for structural change in regression possibly with endogeneity," Journal of Econometrics, Elsevier, vol. 211(1), pages 206-242.
    7. Tae‐Hwy Lee & Shahnaz Parsaeian & Aman Ullah, 2022. "Optimal forecast under structural breaks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 965-987, August.
    8. Zifeng Zhao & Feiyu Jiang & Xiaofeng Shao, 2022. "Segmenting time series via self‐normalisation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1699-1725, November.
    9. Emanuela Ciapanna & Marco Taboga, 2019. "Bayesian Analysis of Coefficient Instability in Dynamic Regressions," Econometrics, MDPI, vol. 7(3), pages 1-32, June.
    10. Boot, Tom & Pick, Andreas, 2020. "Does modeling a structural break improve forecast accuracy?," Journal of Econometrics, Elsevier, vol. 215(1), pages 35-59.
    11. Likai Chen & Weining Wang & Wei Biao Wu, 2017. "Dynamic Semiparametric Factor Model with a Common Break," SFB 649 Discussion Papers SFB649DP2017-026, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    12. Markus Bibinger & Moritz Jirak & Mathias Vetter, 2015. "Nonparametric change-point analysis of volatility," SFB 649 Discussion Papers SFB649DP2015-008, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    13. Tom Boot & Andreas Pick, 2017. "A near optimal test for structural breaks when forecasting under square error loss," Tinbergen Institute Discussion Papers 17-039/III, Tinbergen Institute.
    14. Bernard, Jean-Thomas & Idoudi, Nadhem & Khalaf, Lynda & Yelou, Clement, 2007. "Finite sample multivariate structural change tests with application to energy demand models," Journal of Econometrics, Elsevier, vol. 141(2), pages 1219-1244, December.
    15. Anne Morrison Piehl & Suzanne J. Cooper & Anthony A. Braga & David M. Kennedy, 2003. "Testing for Structural Breaks in the Evaluation of Programs," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 550-558, August.
    16. Shinhye Chang & Rangan Gupta & Stephen M. Miller, 2018. "Causality Between Per Capita Real GDP and Income Inequality in the U.S.: Evidence from a Wavelet Analysis," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(1), pages 269-289, January.
    17. John M. Maheu & Stephen Gordon, 2008. "Learning, forecasting and structural breaks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 553-583.
    18. Benati, Luca, 2007. "Drift and breaks in labor productivity," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2847-2877, August.
    19. Gómez-Puig, Marta & Sosvilla-Rivero, Simón, 2014. "Causality and contagion in EMU sovereign debt markets," International Review of Economics & Finance, Elsevier, vol. 33(C), pages 12-27.
    20. Pierre Perron & Yohei Yamamoto, 2022. "Structural change tests under heteroskedasticity: Joint estimation versus two‐steps methods," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 389-411, May.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1903.05403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.