IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20250025.html
   My bibliography  Save this paper

Forecasting Atmospheric Ethane: Application to the Jungfraujoch Measurement Station

Author

Listed:
  • Marina Friedrich

    (Vrije Universiteit Amsterdam and Tinbergen Institute)

  • Karim Moussa

    (Vrije Universiteit Amsterdam and Tinbergen Institute)

  • Yuliya Shapovalova

    (Radboud University Nijmegen)

  • David van der Straten

    (Vrije Universiteit Amsterdam and Tinbergen Institute)

Abstract

Understanding the developments of atmospheric ethane is essential for better identifying the anthropogenic sources of methane, a major greenhouse gas with high global warming potential. While previous studies have focused on analyzing past trends in ethane and modeling the inter-annual variability, this paper aims at forecasting the atmospheric ethane burden above the Jungfraujoch (Switzerland). Since measurements can only be taken under clear sky conditions, a substantial fraction of the data (around 76%) is missing. The presence of missing data together with a strong seasonal component complicates the analysis and limits the availability of appropriate forecasting methods. In this paper, we propose five distinct approaches which we compare to a simple benchmark – a deterministic trending seasonal model – which is one of the most commonly used models in the ethane literature. We find that a structural time series model performs best for one-day ahead forecasts, while damped exponential smoothing and Gaussian process regression provide the best results for longer horizons. Additionally, we observe that forecasts are mostly driven by the seasonal component. This emphasizes the importance of selecting methods capable of capturing the seasonal variation in ethane measurements.

Suggested Citation

  • Marina Friedrich & Karim Moussa & Yuliya Shapovalova & David van der Straten, 2025. "Forecasting Atmospheric Ethane: Application to the Jungfraujoch Measurement Station," Tinbergen Institute Discussion Papers 25-025/III, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20250025
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/25025.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    2. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737, Enero-Abr.
    3. Federico Maddanu & Tommaso Proietti, 2023. "Trends in atmospheric ethane," Climatic Change, Springer, vol. 176(5), pages 1-23, May.
    4. Cai, Zongwu, 2007. "Trending time-varying coefficient time series models with serially correlated errors," Journal of Econometrics, Elsevier, vol. 136(1), pages 163-188, January.
    5. Friedrich, Marina & Lin, Yicong, 2024. "Sieve bootstrap inference for linear time-varying coefficient models," Journal of Econometrics, Elsevier, vol. 239(1).
    6. Rong Chen & Lijian Yang & Christian Hafner, 2004. "Nonparametric multistep‐ahead prediction in time series analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 669-686, August.
    7. Harvey, Andrew & Snyder, Ralph D., 1990. "Structural time series models in inventory control," International Journal of Forecasting, Elsevier, vol. 6(2), pages 187-198, July.
    8. Friedrich, Marina & Smeekes, Stephan & Urbain, Jean-Pierre, 2020. "Autoregressive wild bootstrap inference for nonparametric trends," Journal of Econometrics, Elsevier, vol. 214(1), pages 81-109.
    9. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178, Decembrie.
    10. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    11. Marina Friedrich & Eric Beutner & Hanno Reuvers & Stephan Smeekes & Jean-Pierre Urbain & Whitney Bader & Bruno Franco & Bernard Lejeune & Emmanuel Mahieu, 2020. "A statistical analysis of time trends in atmospheric ethane," Climatic Change, Springer, vol. 162(1), pages 105-125, September.
    12. Xiangjin B. Chen & Jiti Gao & Degui Li & Param Silvapulle, 2018. "Nonparametric Estimation and Forecasting for Time-Varying Coefficient Realized Volatility Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 88-100, January.
    13. Mauro Bernardi & Leopoldo Catania, 2018. "The model confidence set package for R," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 8(2), pages 144-158.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Fumio Hayashi & Yuta Tachi, 2023. "Nowcasting Japan’s GDP," Empirical Economics, Springer, vol. 64(4), pages 1699-1735, April.
    3. Sbrana, Giacomo & Silvestrini, Andrea, 2022. "Random coefficient state-space model: Estimation and performance in M3–M4 competitions," International Journal of Forecasting, Elsevier, vol. 38(1), pages 352-366.
    4. Loïc Maréchal, 2021. "Do economic variables forecast commodity futures volatility?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(11), pages 1735-1774, November.
    5. Krist'of N'emeth & D'aniel Hadh'azi, 2023. "GDP nowcasting with artificial neural networks: How much does long-term memory matter?," Papers 2304.05805, arXiv.org, revised Jan 2025.
    6. Yicong Lin & Mingxuan Song, 2023. "Robust bootstrap inference for linear time-varying coefficient models: Some Monte Carlo evidence," Tinbergen Institute Discussion Papers 23-049/III, Tinbergen Institute.
    7. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    8. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    9. Catania, Leopoldo & Grassi, Stefano & Ravazzolo, Francesco, 2019. "Forecasting cryptocurrencies under model and parameter instability," International Journal of Forecasting, Elsevier, vol. 35(2), pages 485-501.
    10. Drachal, Krzysztof, 2021. "Forecasting crude oil real prices with averaging time-varying VAR models," Resources Policy, Elsevier, vol. 74(C).
    11. Krist'of N'emeth & D'aniel Hadh'azi, 2024. "Generating density nowcasts for U.S. GDP growth with deep learning: Bayes by Backprop and Monte Carlo dropout," Papers 2405.15579, arXiv.org.
    12. Anwen Yin, 2024. "Predictive model averaging with parameter instability and heteroskedasticity," Bulletin of Economic Research, Wiley Blackwell, vol. 76(2), pages 418-442, April.
    13. Niels Haldrup & Carsten P. T. Rosenskjold, 2019. "A Parametric Factor Model of the Term Structure of Mortality," Econometrics, MDPI, vol. 7(1), pages 1-22, March.
    14. Cartea, Álvaro & Karyampas, Dimitrios, 2011. "Volatility and covariation of financial assets: A high-frequency analysis," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3319-3334.
    15. Gianluca Cubadda, 2007. "A Reduced Rank Regression Approach to Coincident and Leading Indexes Building," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(2), pages 271-292, April.
    16. Dewenter, Ralf & Heimeshoff, Ulrich, 2016. "Predicting advertising volumes: A structural time series approach," DICE Discussion Papers 228, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    17. Zhang, Yaojie & Lei, Likun & Wei, Yu, 2020. "Forecasting the Chinese stock market volatility with international market volatilities: The role of regime switching," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    18. Benjamin Poignard & Manabu Asai, 2023. "High‐dimensional sparse multivariate stochastic volatility models," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(1), pages 4-22, January.
    19. Sergio Contreras-Espinoza & Francisco Novoa-Muñoz & Szabolcs Blazsek & Pedro Vidal & Christian Caamaño-Carrillo, 2022. "COVID-19 Active Case Forecasts in Latin American Countries Using Score-Driven Models," Mathematics, MDPI, vol. 11(1), pages 1-17, December.
    20. Yelland, Phillip M., 2010. "Bayesian forecasting of parts demand," International Journal of Forecasting, Elsevier, vol. 26(2), pages 374-396, April.

    More about this item

    Keywords

    ;
    ;
    ;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20250025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.