Forecasting Atmospheric Ethane: Application to the Jungfraujoch Measurement Station
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Harvey,Andrew C., 1991.
"Forecasting, Structural Time Series Models and the Kalman Filter,"
Cambridge Books,
Cambridge University Press, number 9780521405737, Enero-Abr.
- Harvey,Andrew C., 1990. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521321969, Enero-Abr.
- Federico Maddanu & Tommaso Proietti, 2023. "Trends in atmospheric ethane," Climatic Change, Springer, vol. 176(5), pages 1-23, May.
- Cai, Zongwu, 2007. "Trending time-varying coefficient time series models with serially correlated errors," Journal of Econometrics, Elsevier, vol. 136(1), pages 163-188, January.
- Friedrich, Marina & Lin, Yicong, 2024. "Sieve bootstrap inference for linear time-varying coefficient models," Journal of Econometrics, Elsevier, vol. 239(1).
- Rong Chen & Lijian Yang & Christian Hafner, 2004.
"Nonparametric multistep‐ahead prediction in time series analysis,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 669-686, August.
- CHEN, Rong & YANG, Lijian & HAFNER, Christian, 2004. "Nonparametric multistep-ahead prediction in time series analysis," LIDAM Reprints CORE 1783, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Harvey, Andrew & Snyder, Ralph D., 1990. "Structural time series models in inventory control," International Journal of Forecasting, Elsevier, vol. 6(2), pages 187-198, July.
- Friedrich, Marina & Smeekes, Stephan & Urbain, Jean-Pierre, 2020.
"Autoregressive wild bootstrap inference for nonparametric trends,"
Journal of Econometrics, Elsevier, vol. 214(1), pages 81-109.
- Friedrich, Marina & Smeekes, Stephan & Urbain, Jean-Pierre, 2017. "Autoregressive Wild Bootstrap Inference for Nonparametric Trends," Research Memorandum 010, Maastricht University, Graduate School of Business and Economics (GSBE).
- Marina Friedrich & Stephan Smeekes & Jean-Pierre Urbain, 2018. "Autoregressive Wild Bootstrap Inference for Nonparametric Trends," Papers 1807.02357, arXiv.org, revised Nov 2019.
- Durbin, James & Koopman, Siem Jan, 2012.
"Time Series Analysis by State Space Methods,"
OUP Catalogue,
Oxford University Press,
edition 2, number 9780199641178, Decembrie.
- Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543, Decembrie.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Marina Friedrich & Eric Beutner & Hanno Reuvers & Stephan Smeekes & Jean-Pierre Urbain & Whitney Bader & Bruno Franco & Bernard Lejeune & Emmanuel Mahieu, 2020.
"A statistical analysis of time trends in atmospheric ethane,"
Climatic Change, Springer, vol. 162(1), pages 105-125, September.
- Marina Friedrich & Eric Beutner & Hanno Reuvers & Stephan Smeekes & Jean-Pierre Urbain & Whitney Bader & Bruno Franco & Bernard Lejeune & Emmanuel Mahieu, 2019. "A statistical analysis of time trends in atmospheric ethane," Papers 1903.05403, arXiv.org, revised Jun 2020.
- Xiangjin B. Chen & Jiti Gao & Degui Li & Param Silvapulle, 2018. "Nonparametric Estimation and Forecasting for Time-Varying Coefficient Realized Volatility Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 88-100, January.
- Mauro Bernardi & Leopoldo Catania, 2018. "The model confidence set package for R," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 8(2), pages 144-158.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Fumio Hayashi & Yuta Tachi, 2023. "Nowcasting Japan’s GDP," Empirical Economics, Springer, vol. 64(4), pages 1699-1735, April.
- Sbrana, Giacomo & Silvestrini, Andrea, 2022. "Random coefficient state-space model: Estimation and performance in M3–M4 competitions," International Journal of Forecasting, Elsevier, vol. 38(1), pages 352-366.
- Loïc Maréchal, 2021. "Do economic variables forecast commodity futures volatility?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(11), pages 1735-1774, November.
- Krist'of N'emeth & D'aniel Hadh'azi, 2023. "GDP nowcasting with artificial neural networks: How much does long-term memory matter?," Papers 2304.05805, arXiv.org, revised Jan 2025.
- Yicong Lin & Mingxuan Song, 2023. "Robust bootstrap inference for linear time-varying coefficient models: Some Monte Carlo evidence," Tinbergen Institute Discussion Papers 23-049/III, Tinbergen Institute.
- Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
- Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023.
"Forecasting electricity prices with expert, linear, and nonlinear models,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
- Anna Gloria Billé & Angelica Gianfreda & Filippo Del Grosso & Francesco Ravazzolo, 2021. "Forecasting Electricity Prices with Expert, Linear and Non-Linear Models," Working Paper series 21-20, Rimini Centre for Economic Analysis.
- Catania, Leopoldo & Grassi, Stefano & Ravazzolo, Francesco, 2019. "Forecasting cryptocurrencies under model and parameter instability," International Journal of Forecasting, Elsevier, vol. 35(2), pages 485-501.
- Drachal, Krzysztof, 2021. "Forecasting crude oil real prices with averaging time-varying VAR models," Resources Policy, Elsevier, vol. 74(C).
- Krist'of N'emeth & D'aniel Hadh'azi, 2024. "Generating density nowcasts for U.S. GDP growth with deep learning: Bayes by Backprop and Monte Carlo dropout," Papers 2405.15579, arXiv.org.
- Anwen Yin, 2024. "Predictive model averaging with parameter instability and heteroskedasticity," Bulletin of Economic Research, Wiley Blackwell, vol. 76(2), pages 418-442, April.
- Niels Haldrup & Carsten P. T. Rosenskjold, 2019.
"A Parametric Factor Model of the Term Structure of Mortality,"
Econometrics, MDPI, vol. 7(1), pages 1-22, March.
- Niels Haldrup & Carsten P. T. Rosenskjold, 2018. "A Parametric Factor Model of the Term Structure of Mortality," CREATES Research Papers 2018-06, Department of Economics and Business Economics, Aarhus University.
- Cartea, Álvaro & Karyampas, Dimitrios, 2011.
"Volatility and covariation of financial assets: A high-frequency analysis,"
Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3319-3334.
- Álvaro Cartea & Dimitrios Karyampas, 2009. "Volatility and Covariation of Financial Assets: A High-Frequency Analysis," Birkbeck Working Papers in Economics and Finance 0913, Birkbeck, Department of Economics, Mathematics & Statistics.
- Cartea, Álvaro & Karyampas, Dimitrios, 2009. "Volatility and covariation of financial assets: a high-frequency analysis," DEE - Working Papers. Business Economics. WB wb097609, Universidad Carlos III de Madrid. Departamento de EconomÃa de la Empresa.
- Gianluca Cubadda, 2007.
"A Reduced Rank Regression Approach to Coincident and Leading Indexes Building,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(2), pages 271-292, April.
- Cubadda, Gianluca, 2004. "A Reduced Rank Regression Approach to Coincident and Leading Indexes Building," Economics & Statistics Discussion Papers esdp04022, University of Molise, Department of Economics.
- Dewenter, Ralf & Heimeshoff, Ulrich, 2016. "Predicting advertising volumes: A structural time series approach," DICE Discussion Papers 228, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
- Zhang, Yaojie & Lei, Likun & Wei, Yu, 2020. "Forecasting the Chinese stock market volatility with international market volatilities: The role of regime switching," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Benjamin Poignard & Manabu Asai, 2023.
"High‐dimensional sparse multivariate stochastic volatility models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 44(1), pages 4-22, January.
- Benjamin Poignard & Manabu Asai, 2022. "High-Dimensional Sparse Multivariate Stochastic Volatility Models," Papers 2201.08584, arXiv.org, revised May 2022.
- Sergio Contreras-Espinoza & Francisco Novoa-Muñoz & Szabolcs Blazsek & Pedro Vidal & Christian Caamaño-Carrillo, 2022. "COVID-19 Active Case Forecasts in Latin American Countries Using Score-Driven Models," Mathematics, MDPI, vol. 11(1), pages 1-17, December.
- Yelland, Phillip M., 2010. "Bayesian forecasting of parts demand," International Journal of Forecasting, Elsevier, vol. 26(2), pages 374-396, April.
More about this item
Keywords
; ; ;JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ENV-2025-07-21 (Environmental Economics)
- NEP-ETS-2025-07-21 (Econometric Time Series)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20250025. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.