IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2110.08807.html
   My bibliography  Save this paper

Estimating returns to special education: combining machine learning and text analysis to address confounding

Author

Listed:
  • Aur'elien Sallin

Abstract

Leveraging unique insights into the special education placement process through written individual psychological records, I present results from the first ever study to examine short- and long-term returns to special education programs with causal machine learning and computational text analysis methods. I find that special education programs in inclusive settings have positive returns in terms of academic performance as well as labor-market integration. Moreover, I uncover a positive effect of inclusive special education programs in comparison to segregated programs. This effect is heterogenous: segregation has least negative effects for students with emotional or behavioral problems, and for nonnative students with special needs. Finally, I deliver optimal program placement rules that would maximize aggregated school performance and labor market integration for students with special needs at lower program costs. These placement rules would reallocate most students with special needs from segregation to inclusion.

Suggested Citation

  • Aur'elien Sallin, 2021. "Estimating returns to special education: combining machine learning and text analysis to address confounding," Papers 2110.08807, arXiv.org, revised Feb 2022.
  • Handle: RePEc:arx:papers:2110.08807
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2110.08807
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2009. "Dealing with limited overlap in estimation of average treatment effects," Biometrika, Biometrika Trust, vol. 96(1), pages 187-199.
    2. James Heckman & Rodrigo Pinto & Peter Savelyev, 2013. "Understanding the Mechanisms through Which an Influential Early Childhood Program Boosted Adult Outcomes," American Economic Review, American Economic Association, vol. 103(6), pages 2052-2086, October.
    3. Victor Chernozhukov & Iván Fernández‐Val & Ye Luo, 2018. "The Sorted Effects Method: Discovering Heterogeneous Effects Beyond Their Averages," Econometrica, Econometric Society, vol. 86(6), pages 1911-1938, November.
    4. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    5. Heckman, James J. & Moon, Seong Hyeok & Pinto, Rodrigo & Savelyev, Peter A. & Yavitz, Adam, 2010. "The rate of return to the HighScope Perry Preschool Program," Journal of Public Economics, Elsevier, vol. 94(1-2), pages 114-128, February.
    6. Marianne Bertrand & Jessica Pan, 2013. "The Trouble with Boys: Social Influences and the Gender Gap in Disruptive Behavior," American Economic Journal: Applied Economics, American Economic Association, vol. 5(1), pages 32-64, January.
    7. Keslair, Francois & Maurin, Eric & McNally, Sandra, 2012. "Every child matters? An evaluation of “Special Educational Needs” programmes in England," Economics of Education Review, Elsevier, vol. 31(6), pages 932-948.
    8. Duncombe, William & Yinger, John, 2005. "How much more does a disadvantaged student cost?," Economics of Education Review, Elsevier, vol. 24(5), pages 513-532, October.
    9. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    10. Victor Lavy & Analia Schlosser, 2011. "Mechanisms and Impacts of Gender Peer Effects at School," American Economic Journal: Applied Economics, American Economic Association, vol. 3(2), pages 1-33, April.
    11. Raj Chetty & John N. Friedman & Nathaniel Hilger & Emmanuel Saez & Diane Whitmore Schanzenbach & Danny Yagan, 2011. "How Does Your Kindergarten Classroom Affect Your Earnings? Evidence from Project Star," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 126(4), pages 1593-1660.
    12. repec:pri:cheawb:case_paxson_economic_status_paper is not listed on IDEAS
    13. Margaret E. Roberts & Brandon M. Stewart & Richard A. Nielsen, 2020. "Adjusting for Confounding with Text Matching," American Journal of Political Science, John Wiley & Sons, vol. 64(4), pages 887-903, October.
    14. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    15. Timothy M. Diette & Ruth Uwaifo Oyelere, 2014. "Gender and Race Heterogeneity: The Impact of Students with Limited English on Native Students' Performance," American Economic Review, American Economic Association, vol. 104(5), pages 412-417, May.
    16. Janet Currie & Mark Stabile, 2003. "Socioeconomic Status and Child Health: Why Is the Relationship Stronger for Older Children?," American Economic Review, American Economic Association, vol. 93(5), pages 1813-1823, December.
    17. Anne Case & Darren Lubotsky & Christina Paxson, 2002. "Economic Status and Health in Childhood: The Origins of the Gradient," American Economic Review, American Economic Association, vol. 92(5), pages 1308-1334, December.
    18. Eric A. Hanushek & John F. Kain & Steven G. Rivkin, 2002. "Inferring Program Effects for Special Populations: Does Special Education Raise Achievement for Students with Disabilities?," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 584-599, November.
    19. Scott E. Carrell & Mark Hoekstra & Elira Kuka, 2018. "The Long-Run Effects of Disruptive Peers," American Economic Review, American Economic Association, vol. 108(11), pages 3377-3415, November.
    20. Cullen, Julie Berry, 2003. "The impact of fiscal incentives on student disability rates," Journal of Public Economics, Elsevier, vol. 87(7-8), pages 1557-1589, August.
    21. repec:pri:cheawb:case_paxson_economic_status_paper.pdf is not listed on IDEAS
    22. Mozer, Reagan & Miratrix, Luke & Kaufman, Aaron Russell & Jason Anastasopoulos, L., 2020. "Matching with Text Data: An Experimental Evaluation of Methods for Matching Documents and of Measuring Match Quality," Political Analysis, Cambridge University Press, vol. 28(4), pages 445-468, October.
    23. Cho, Rosa Minhyo, 2012. "Are there peer effects associated with having English Language Learner (ELL) classmates? Evidence from the Early Childhood Longitudinal Study Kindergarten Cohort (ECLS-K)," Economics of Education Review, Elsevier, vol. 31(5), pages 629-643.
    24. Victor Lavy & Analia Schlosser, 2005. "Targeted Remedial Education for Underperforming Teenagers: Costs and Benefits," Journal of Labor Economics, University of Chicago Press, vol. 23(4), pages 839-874, October.
    25. McGee, Andrew, 2011. "Skills, standards, and disabilities: How youth with learning disabilities fare in high school and beyond," Economics of Education Review, Elsevier, vol. 30(1), pages 109-129, February.
    26. Victor Lavy & Analía Schlosser, 2011. "Corrigendum: Mechanisms and Impacts of Gender Peer Effects at School," American Economic Journal: Applied Economics, American Economic Association, vol. 3(3), pages 268-268, July.
    27. Eva Deuchert & Martin Huber, 2017. "A Cautionary Tale About Control Variables in IV Estimation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(3), pages 411-425, June.
    28. Glynn, Adam N. & Quinn, Kevin M., 2010. "An Introduction to the Augmented Inverse Propensity Weighted Estimator," Political Analysis, Cambridge University Press, vol. 18(1), pages 36-56, January.
    29. Jason M. Fletcher, 2009. "The Effects of Inclusion on Classmates of Students with Special Needs: The Case of Serious Emotional Problems," Education Finance and Policy, MIT Press, vol. 4(3), pages 278-299, July.
    30. D’Amour, Alexander & Ding, Peng & Feller, Avi & Lei, Lihua & Sekhon, Jasjeet, 2021. "Overlap in observational studies with high-dimensional covariates," Journal of Econometrics, Elsevier, vol. 221(2), pages 644-654.
    31. repec:hal:pseose:hal-00813249 is not listed on IDEAS
    32. Rangvid, Beatrice Schindler, 2019. "Returning special education students to regular classrooms: Externalities on peers’ reading scores," Economics of Education Review, Elsevier, vol. 68(C), pages 13-22.
    33. Alexander Cappelen & John List & Anya Samek & Bertil Tungodden, 2020. "The Effect of Early-Childhood Education on Social Preferences," Journal of Political Economy, University of Chicago Press, vol. 128(7), pages 2739-2758.
    34. Greg J. Duncan & Katherine Magnuson, 2013. "Investing in Preschool Programs," Journal of Economic Perspectives, American Economic Association, vol. 27(2), pages 109-132, Spring.
    35. Margaret E. Roberts & Brandon M. Stewart & Edoardo M. Airoldi, 2016. "A Model of Text for Experimentation in the Social Sciences," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 988-1003, July.
    36. Jonathan M.V. Davis & Sara B. Heller, 2017. "Using Causal Forests to Predict Treatment Heterogeneity: An Application to Summer Jobs," American Economic Review, American Economic Association, vol. 107(5), pages 546-550, May.
    37. Elder, Todd E., 2010. "The importance of relative standards in ADHD diagnoses: Evidence based on exact birth dates," Journal of Health Economics, Elsevier, vol. 29(5), pages 641-656, September.
    38. Simone Balestra & Beatrix Eugster & Helge Liebert, 2020. "Summer‐born struggle: The effect of school starting age on health, education, and work," Health Economics, John Wiley & Sons, Ltd., vol. 29(5), pages 591-607, May.
    39. Fan Li & Kari Lock Morgan & Alan M. Zaslavsky, 2018. "Balancing Covariates via Propensity Score Weighting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 390-400, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriel Okasa, 2022. "Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit Performance," Papers 2201.12692, arXiv.org.
    2. Aurélien Sallin & Simone Balestra, 2022. "The Earth is Not Flat: A New World of High-Dimensional Peer Effects," Economics of Education Working Paper Series 0189, University of Zurich, Department of Business Administration (IBW).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sallin, Aurelién, 2021. "Estimating returns to special education: combining machine learning and text analysis to address confounding," Economics Working Paper Series 2109, University of St. Gallen, School of Economics and Political Science.
    2. Kristoffersen, Jannie Helene Grøne & Krægpøth, Morten Visby & Nielsen, Helena Skyt & Simonsen, Marianne, 2015. "Disruptive school peers and student outcomes," Economics of Education Review, Elsevier, vol. 45(C), pages 1-13.
    3. John List & Haruka Uchida, 2024. "Here Today, Gone Tomorrow? Toward an Understanding of Fade-out in Early Childhood Education Programs," Framed Field Experiments 00797, The Field Experiments Website.
    4. Getik, Demid & Meier, Armando N., 2022. "Peer gender and mental health⁎," Journal of Economic Behavior & Organization, Elsevier, vol. 197(C), pages 643-659.
    5. Getik, Demid & Meier, Armando N., 2020. "Peer Gender and Mental Health," Working papers 2020/15, Faculty of Business and Economics - University of Basel.
    6. Figlio, D. & Karbownik, K. & Salvanes, K.G., 2016. "Education Research and Administrative Data," Handbook of the Economics of Education,, Elsevier.
    7. Li, Li & Zhao, Liqiu, 2022. "Does a “bad apple” spoil the bunch? The impact of low-achieving students on non-cognitive outcomes," China Economic Review, Elsevier, vol. 76(C).
    8. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    9. Alexandra de Gendre & Nicolás Salamanca, 2020. "On the Mechanisms of Ability Peer Effects," Melbourne Institute Working Paper Series wp2020n19, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
    10. Rangvid, Beatrice Schindler, 2019. "Returning special education students to regular classrooms: Externalities on peers’ reading scores," Economics of Education Review, Elsevier, vol. 68(C), pages 13-22.
    11. Daniel Borbely & Jonathan Norris & Agnese Romiti, 2023. "Peer Gender and Schooling: Evidence from Ethiopia," Journal of Human Capital, University of Chicago Press, vol. 17(2), pages 207-249.
    12. Zhao, Liqiu & Zhao, Zhong, 2021. "Disruptive Peers in the Classroom and Students’ Academic Outcomes: Evidence and Mechanisms," Labour Economics, Elsevier, vol. 68(C).
    13. Huang, Bin & Lu, Haiyang & Zhu, Rong, 2021. "Disabled Peers and Student Performance: Quasi-Experimental Evidence from China," Economics of Education Review, Elsevier, vol. 82(C).
    14. Zhang, Haifeng & Zang, Lijun & Mao, Mingzhi & Guo, Jiqiang & Wang, Chunchao, 2023. "The externalities of preschool attendees in middle school classes," China Economic Review, Elsevier, vol. 77(C).
    15. Feng, Shuaizhang & Kim, Jun Hyung & Yang, Zhe, 2021. "Effects of Childhood Peers on Personality Skills," IZA Discussion Papers 14952, Institute of Labor Economics (IZA).
    16. Eva Deuchert & Lukas Kauer & Helge Liebert & Carl Wuppermann, 2017. "Disability discrimination in higher education: analyzing the quality of counseling services," Education Economics, Taylor & Francis Journals, vol. 25(6), pages 543-553, November.
    17. Oyenubi, Adeola & Kollamparambil, Umakrishnan, 2023. "Does noncompliance with COVID-19 regulations impact the depressive symptoms of others?," Economic Modelling, Elsevier, vol. 120(C).
    18. Daniel Goller, 2023. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Annals of Operations Research, Springer, vol. 325(1), pages 649-679, June.
    19. Yi Cao & Tao Zhou & Jian Gao, 2024. "Heterogeneous peer effects of college roommates on academic performance," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Morales, Camila, 2022. "Do refugee students affect the academic achievement of peers? Evidence from a large urban school district," Economics of Education Review, Elsevier, vol. 89(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2110.08807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.