IDEAS home Printed from https://ideas.repec.org/p/ags/saea16/230092.html
   My bibliography  Save this paper

Did technical change in agricultural production decrease the emission of pollutants on the Amazon Forest during 1990-2009?

Author

Listed:
  • Silva, Felipe
  • Fulginiti, Lilyan E.
  • Perrin, Richard K.

Abstract

The Amazon Forest is the largest tropical forest in the world stretching over nine states in northern Brazil. Land use in the Amazon Forest has been under discussion due to its direct and indirect effects on emission and sequestration of greenhouse gases (GHGs) such as CO2, N2O and CH4. Our interest here is to investigate whether technological change in agriculture has resulted in higher or lower costs of emissions abatement. We examined a panel of nine states from this region during the period 1990-2009, a period of rapid agricultural expansion as well as a series of new environmental regulations. The rate of technical change and its biases were estimated using stochastic and non-stochastic approaches. Preliminary results indicate a technological progress for Brazilian’s Amazon Forest states, which suggests a simultaneously expansion on GDP and contracted on CO2e emissions due to technical change. This technical change has been biased toward GDP and against emissions, indicating an increase in GDP foregone to achieve a given reduction in emissions.

Suggested Citation

  • Silva, Felipe & Fulginiti, Lilyan E. & Perrin, Richard K., 2016. "Did technical change in agricultural production decrease the emission of pollutants on the Amazon Forest during 1990-2009?," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 230092, Southern Agricultural Economics Association.
  • Handle: RePEc:ags:saea16:230092
    DOI: 10.22004/ag.econ.230092
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/230092/files/Technical%20Change%20and%20GHG%20emission.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.230092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hongil Lim & C. Richard Shumway, 1997. "Technical Change and Model Specification: U.S. Agricultural Production," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(2), pages 543-554.
    2. Pascale COMBES MOTEL & Jean-Louis COMBES & Catherine ARAUJO BONJEAN & Claudio ARAUJO & Eustaquio J. REIS, 2010. "Does Land Tenure Insecurity Drive Deforestation in the Brazilian Amazon?," Working Papers 201013, CERDI.
    3. Rada, Nicholas E. & Valdes, Constanza, 2012. "Policy, Technology, and Efficiency of Brazilian Agriculture," Economic Research Report 127498, United States Department of Agriculture, Economic Research Service.
    4. Cuesta, Rafael A. & Lovell, C.A. Knox & Zofío, José L., 2009. "Environmental efficiency measurement with translog distance functions: A parametric approach," Ecological Economics, Elsevier, vol. 68(8-9), pages 2232-2242, June.
    5. Rolf Färe & Shawna Grosskopf & Carl A. Pasurka & William L. Weber, 2012. "Substitutability among undesirable outputs," Applied Economics, Taylor & Francis Journals, vol. 44(1), pages 39-47, January.
    6. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    7. Christensen, Laurits R & Jorgenson, Dale W & Lau, Lawrence J, 1973. "Transcendental Logarithmic Production Frontiers," The Review of Economics and Statistics, MIT Press, vol. 55(1), pages 28-45, February.
    8. Nelson B. Villoria & Derek Byerlee & James Stevenson, 2014. "The Effects of Agricultural Technological Progress on Deforestation: What Do We Really Know?," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 36(2), pages 211-237.
    9. Fare, Rolf & Grosskopf, Shawna & Weber, William L., 2006. "Shadow prices and pollution costs in U.S. agriculture," Ecological Economics, Elsevier, vol. 56(1), pages 89-103, January.
    10. Zvi Griliches, 1958. "Research Costs and Social Returns: Hybrid Corn and Related Innovations," Journal of Political Economy, University of Chicago Press, vol. 66(5), pages 419-419.
    11. William L. Weber & Yin Xia, 2011. "The Productivity of Nanobiotechnology Research and Education in U.S. Universities," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(4), pages 1151-1167.
    12. Kumbhakar,Subal C. & Wang,Hung-Jen & Horncastle,Alan P., 2015. "A Practitioner's Guide to Stochastic Frontier Analysis Using Stata," Cambridge Books, Cambridge University Press, number 9781107029514.
    13. Araujo, Claudio & Bonjean, Catherine Araujo & Combes, Jean-Louis & Combes Motel, Pascale & Reis, Eustaquio J., 2009. "Property rights and deforestation in the Brazilian Amazon," Ecological Economics, Elsevier, vol. 68(8-9), pages 2461-2468, June.
    14. Surender Kumar & Hidemichi Fujii & Shunsuke Managi, 2015. "Substitute or complement? Assessing renewable and nonrenewable energy in OECD countries," Applied Economics, Taylor & Francis Journals, vol. 47(14), pages 1438-1459, March.
    15. Richards, Peter D., 2012. "Exchange Rates, Soybean Supply Response, and Deforestation in South America," Graduate Research Master's Degree Plan B Papers 138606, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    16. Zhou, X. & Fan, L.W. & Zhou, P., 2015. "Marginal CO2 abatement costs: Findings from alternative shadow price estimates for Shanghai industrial sectors," Energy Policy, Elsevier, vol. 77(C), pages 109-117.
    17. Lilyan E. Fulginiti, 2010. "Estimating Griliches' k-Shifts," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 92(1), pages 86-101.
    18. Grigorios Emvalomatis & Spiro E. Stefanou & Alfons Oude Lansink, 2010. "A Reduced-Form Model for Dynamic Efficiency Measurement: Application to Dairy Farms in Germany and The Netherlands," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(1), pages 161-174.
    19. Zhou, P. & Zhou, X. & Fan, L.W., 2014. "On estimating shadow prices of undesirable outputs with efficiency models: A literature review," Applied Energy, Elsevier, vol. 130(C), pages 799-806.
    20. Rolf Färe & Giannis Karagiannis, 2014. "Radial and directional measures of the rate of technical change," Journal of Economics, Springer, vol. 112(2), pages 183-199, June.
    21. Britaldo Silveira Soares-Filho & Daniel Curtis Nepstad & Lisa M. Curran & Gustavo Coutinho Cerqueira & Ricardo Alexandrino Garcia & Claudia Azevedo Ramos & Eliane Voll & Alice McDonald & Paul Lefebvre, 2006. "Modelling conservation in the Amazon basin," Nature, Nature, vol. 440(7083), pages 520-523, March.
    22. Andrea Cattaneo, 2001. "Deforestation in the Brazilian Amazon: Comparing the Impacts of Macroeconomic Shocks, Land Tenure, and Technological Change," Land Economics, University of Wisconsin Press, vol. 77(2), pages 219-240.
    23. Cassiano Bragagnolo & Humberto F. S. Spolador & Geraldo Sant’Ana de Camargo Barros, 2010. "Regional Brazilian Agriculture TFP Analysis: A Stochastic Frontier Analysis Approach," Economia, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics], vol. 11(4), pages 217-242.
    24. Lee, Myunghun & Zhang, Ning, 2012. "Technical efficiency, shadow price of carbon dioxide emissions, and substitutability for energy in the Chinese manufacturing industries," Energy Economics, Elsevier, vol. 34(5), pages 1492-1497.
    25. Wei, Chu & Löschel, Andreas & Liu, Bing, 2013. "An empirical analysis of the CO2 shadow price in Chinese thermal power enterprises," Energy Economics, Elsevier, vol. 40(C), pages 22-31.
    26. Bokusheva, Raushan & Kumbhakar, Subal C., 2014. "A Distance Function Model with Good and Bad Outputs," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182765, European Association of Agricultural Economists.
    27. Puppim de Oliveira, Jose Antonio, 2008. "Property rights, land conflicts and deforestation in the Eastern Amazon," Forest Policy and Economics, Elsevier, vol. 10(5), pages 303-315, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silva, F.D.F. & Fulginiti, L. & Perrin, R., 2018. "Agricultural productivity and forest preservation in the Brazilian Amazon," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277167, International Association of Agricultural Economists.
    2. Silva, Felipe & Perrin, Richard K. & Fulginiti, Lilyan E., 2016. "Tradeoffs between forests and farming in the Legal Amazon Region of Brazil," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 230040, Southern Agricultural Economics Association.
    3. Felipe Figueiredo Silva & Lilyan E. Fulginiti & Richard K. Perrin & Marcelo Jose Braga, 2022. "The increasing opportunity cost of sequestering CO2 in the Brazilian Amazon forest," Empirical Economics, Springer, vol. 62(2), pages 439-460, February.
    4. Silva, Felipe & Fulginiti, Lilyan & Perrin, Richard, 2016. "Trade-off between amazon forest and agriculture in Brazil – shadow price and their substitution estimative for 2006," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235800, Agricultural and Applied Economics Association.
    5. Zhang, Ning & Huang, Xuhui & Qi, Chao, 2022. "The effect of environmental regulation on the marginal abatement cost of industrial firms: Evidence from the 11th Five-Year Plan in China," Energy Economics, Elsevier, vol. 112(C).
    6. Tang, Kai & Yang, Lin & Zhang, Jianwu, 2016. "Estimating the regional total factor efficiency and pollutants’ marginal abatement costs in China: A parametric approach," Applied Energy, Elsevier, vol. 184(C), pages 230-240.
    7. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    8. Rakesh Kumar Jain & Surender Kumar, 2018. "Shadow price of CO2 emissions in Indian thermal power sector," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(4), pages 879-902, October.
    9. Zeng, Shihong & Jiang, Xue & Su, Bin & Nan, Xin, 2018. "China's SO2 shadow prices and environmental technical efficiency at the province level," International Review of Economics & Finance, Elsevier, vol. 57(C), pages 86-102.
    10. Wei, Xiao & Zhang, Ning, 2020. "The shadow prices of CO2 and SO2 for Chinese Coal-fired Power Plants: A partial frontier approach," Energy Economics, Elsevier, vol. 85(C).
    11. Zhang, Ning & Huang, Xuhui & Liu, Yunxiao, 2021. "The cost of low-carbon transition for China's coal-fired power plants: A quantile frontier approach," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    12. Adewale Henry Adenuga & John Davis & George Hutchinson & Trevor Donnellan & Myles Patton, 2019. "Environmental Efficiency and Pollution Costs of Nitrogen Surplus in Dairy Farms: A Parametric Hyperbolic Technology Distance Function Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(3), pages 1273-1298, November.
    13. Ji, D.J. & Zhou, P., 2020. "Marginal abatement cost, air pollution and economic growth: Evidence from Chinese cities," Energy Economics, Elsevier, vol. 86(C).
    14. Lee, Sang-choon & Oh, Dong-hyun & Lee, Jeong-dong, 2014. "A new approach to measuring shadow price: Reconciling engineering and economic perspectives," Energy Economics, Elsevier, vol. 46(C), pages 66-77.
    15. Wu, Yinyin & Yu, Jie & Song, Malin & Chen, Jiandong & Hou, Wenxuan, 2021. "Shadow prices of industrial air pollutant emissions in China," Economic Modelling, Elsevier, vol. 94(C), pages 726-736.
    16. Wang, Zhaohua & Song, Yanwu & Shen, Zhiyang, 2022. "Global sustainability of carbon shadow pricing: The distance between observed and optimal abatement costs," Energy Economics, Elsevier, vol. 110(C).
    17. Ke Wang & Linan Che & Chunbo Ma & Yi-Ming Wei, 2017. "The Shadow Price of CO2 Emissions in China's Iron and Steel Industry," CEEP-BIT Working Papers 105, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    18. Molinos-Senante, María & Hanley, Nick & Sala-Garrido, Ramón, 2015. "Measuring the CO2 shadow price for wastewater treatment: A directional distance function approach," Applied Energy, Elsevier, vol. 144(C), pages 241-249.
    19. Kumar, Surender & Jain, Rakesh Kumar, 2019. "Carbon-sensitive meta-productivity growth and technological gap: An empirical analysis of Indian thermal power sector," Energy Economics, Elsevier, vol. 81(C), pages 104-116.
    20. Tamaki, Tetsuya & Shin, Kong Joo & Nakamura, Hiroki & Fujii, Hidemichi & Managi, Shunsuke, 2018. "Shadow prices and production inefficiency of mineral resources," Economic Analysis and Policy, Elsevier, vol. 57(C), pages 111-121.

    More about this item

    Keywords

    Environmental Economics and Policy; Production Economics; Productivity Analysis;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:saea16:230092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/saeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.